首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
粉末活性炭对水中农药的吸附性能研究   总被引:2,自引:1,他引:1  
研究了粉末活性炭对2,4-滴、呋喃丹、甲萘威和莠去津的吸附过程和吸附规律以及投炭量和水质对粉末活性炭吸附性能的影响。结果表明,粉末活性炭能有效去除4种农药;吸附规律符合Freundlich吸附等温线和Langmuir吸附等温线;吸附时间为30 min时,去离子水中的去除率已达到80%以上;随着投炭量的增加,去除率提高,粉末活性炭的吸附容量降低;在不同水质条件下,粉末活性炭的吸附等温线可能不同,因此在应急处理中,首先应该确定该水质下的吸附等温线,然后求出投炭量。  相似文献   

2.
采用静态吸附法研究了邻苯二甲酸二(2-乙基己基)酯(DEHP)在粉末活性炭上的吸附性能,探讨了粉末活性炭对DEHP的吸附等温线、吸附动力学和吸附热力学特征。结果表明,粉末活性炭对DEHP吸附等温线符合Langmuir吸附等温式;分别采用拟一级反应、拟二级反应和颗粒内扩散反应模型对吸附动力学过程进行了拟合,实验数据遵循颗粒内扩散模型;在20、30、40和50℃下,对应的吉布斯自由能(ΔG0)分別为-2.014、-1.441、-0.868和-0.296 kJ/mol,表明该反应自发进行;焓变(ΔH0)<0,证实该反应为放热反应;熵变(ΔS0)<0,说明该吸附反应是熵值减小的过程;吸附活化能Ea=7.234 kJ/mol和粘附概率S*=0.036分别介于5~40 kJ/mol和0~1范围内,表明该吸附过程主要为物理吸附;活性炭吸附前后红外谱图分析,也验证物理吸附为PAC吸附DEHP之主要机制。  相似文献   

3.
应急处理苯胺污染水源水的粉末活性炭吸附工艺的研究   总被引:2,自引:0,他引:2  
以浑河水为原水,模拟突发苯胺污染,通过投加粉末活性炭(PAC)进行应急处理的试验研究.试验结果表明:PAC对苯胺的吸附在30 min内能达到80%~90%的吸附容量;PAC对苯胺的吸附等温线符合弗兰德里希(Freundlich)吸附模式,在苯胺的平衡质量浓度为0.030 mg/L时,PAC对其吸附容量约为5 mg/g;比表面积较大的木屑炭对苯胺的吸附效果比煤质炭好,但粒度以300目左右为宜;炭浆浓度越小对苯胺的吸附效果越好;溶液pH以不小于5为最好;絮凝剂最佳的投加顺序是先投加炭浆然后投加絮凝荆;对突发的浑河水苯胺污染,在取水口处投加PAC是十分有效的应急处理措施.  相似文献   

4.
采用电化学再生法对吸附处理染料废水产生的饱和粉末活性炭(PAC)进行再生,以NaCl为电解质,考察了电源类型、pH、再生时间、电压和NaCl浓度对活性炭再生率的影响,并对活性炭表面酸性含氧官能团进行测定。结果表明:(1)在pH=1、直流电压为6V、NaCl为6g/L、再生90min的最佳条件下,采用单室反应器,饱和PAC再生率达到59.09%。(2)电极循环伏安曲线结果表明,饱和PAC电极表面发生氧化反应,与主电极直接和间接氧化共同作用,使活性炭表面吸附的污染物降解。活性炭表面酸性含氧官能团滴定和红外光谱测试结果进一步表明,电化学再生法使活性炭表面基团得到恢复。  相似文献   

5.
采用混凝-活性炭-膜工艺对黄磷化工渗滤液进行处理,重点考察了该工艺对有机物的去除机制.实验结果表明,混凝剂硫酸铝的投加量为0.2g/L时,渗滤液中各污染物去除率较好;颗粒活性炭对渗滤液中有机物的吸附容量几乎不受渗滤液pH的影响,吸附等温线更符合修正的Freundlich模型,拟二级动力学模型能更好地定量描述有机物在颗粒活性炭上的吸附过程;膜处理进一步提高了剩余有机物和其他污染物的去除率.  相似文献   

6.
吸附法油气回收技术中,吸附剂的填装方式对吸附分离效果有较大的影响。未成形粉末吸附剂具有较高的比表面积和发达的微孔结构,实验采用微孔滤膜包裹粉末活性炭(膜基活性炭),使粉末活性炭固定在吸附装置中,进行了膜基活性炭对轻烃(正己烷、正庚烷)的吸附实验,测定膜基活性炭和颗粒活性炭对轻烃的吸附性能。实验结果表明,相对于颗粒活性炭,轻烃通过膜基活性炭需要压降增加,但是其在膜基活性炭上的吸附量有明显的提高,也具有可实施性;膜基活性炭静态吸附等温线很好地符合Langmuir模型,且动态穿透曲线实验值与Logistic模型模拟值吻合良好。  相似文献   

7.
以黄浦江上游水源地突发苯酚污染为背景,重点考察了粉末活性炭(PAC)吸附、高锰酸钾(KMnO4)氧化及两者联用技术的除酚效能。结果表明,活性炭及氧化剂种类的选择是影响处理效果的重要因素,微孔发达、比表面积巨大的竹炭对苯酚的去除效果明显优于煤质炭、椰壳炭和木质炭;KMnO4对苯酚的氧化能力强于次氯酸钠和高铁酸钾。增大PAC和KMnO4的投加量,可有效提高对苯酚的去除率;PAC吸附-KMnO4氧化联用技术可大大提高除酚效能,投加50mg/LPAC,2mg/LKMnO4可将初始浓度为250/μg/L和500/μg/L的含酚原水分别处理至18μg/L和66/μg/L,是应对高浓度苯酚突发污染的有效应急措施。  相似文献   

8.
研究了废弃物基活性炭对挥发性有机污染物中的典型组分--甲苯的吸附特性.结果表明,废弃物基活性炭吸附甲苯等温线的类型系优惠型吸附等温线,表明具有良好的吸附能力;同时其吸附甲苯时穿透时间的对数与甲苯入口浓度的对数之间具有良好的线性相关性,即可由吸附高浓度甲苯时的穿透时间估算低浓度时的穿透时间;动态吸附时废弃物基活性炭的中孔对甲苯亦具有一定的吸附性能.  相似文献   

9.
不同粒径高浓度粉末活性炭组合UF膜工艺特征和过滤效果   总被引:1,自引:0,他引:1  
采用一体式高浓度粉末活性炭-超滤(HCPAC-UF)组合工艺,处理高氨氮微污染水源水。选取3种不同粒径(50、3和0.2μm)的粉末活性炭考察PAC粒径变化对组合工艺处理效果的影响。结果表明,PAC粒径改变分别对UV254表征的腐殖质类有机物和DOC表征的溶解性有机物的去除影响较小;PAC粒径显著影响系统中的微生物的生长环境,PAC粒径越小,系统中微生物的生长受抑制越明显,同时,PAC的粒径越小对减缓HCPAC-UF工艺的膜污染越显著。研究结果对于优化HCPAC-UF工艺参数具有一定参考价值。  相似文献   

10.
开发了芬顿试剂预氧化-粉末活性炭(PAC)吸附组合工艺处理电厂循环冷却排污水。首先分别研究了芬顿试剂氧化法和粉末活性炭吸附法对有机物的去除效果,发现2种工艺在最佳处理条件时仍存在处理效果较差、药剂费用高等问题。因此,开发了芬顿试剂预氧化-PAC吸附组合工艺,研究了该工艺的影响因素,并进行小试实验。结果表明,该组合工艺在不改变原水的初始pH、H_2O_2与Fe~(2+)的摩尔比为1以及H_2O_2的投加浓度为25 mg·L~(-1)时得到最佳的预处理条件。在最佳预氧化条件下投加0.15 g·L~(-1)的PAC进行了4级逆流吸附小试实验,结果表明:该工艺处理效果稳定、药剂费用低,出水满足排放要求。  相似文献   

11.
研究了三价铁改性对不同活性炭(颗粒和粉末)对水中砷的吸附特性的影响。结果表明,三价铁改性有效提高了活性炭对不同形态砷的吸附性能。其中,对于2种活性炭,As(Ⅲ)和As(Ⅴ)的最佳铁离子改性浓度分别为0.1和0.05 mol/L。此时,通过Langmuir等温线方程拟合得到:粉末和颗粒活性炭对As(Ⅲ)的最大吸附量qm分别为2.38 mg/g和9.39 mg/g;而对As(Ⅴ)的qm分别为5.12 mg/g和2.32 mg/g。此外,当溶液的p H从3升高到9的过程中,吸附量先增加后有所下降,当p H为7时,改性前后的活性炭对砷的吸附量达到最高。  相似文献   

12.
研究了 5种国产活性炭吸附水中沙林的性能及影响因素。果壳质活性炭的吸附性能优于煤质活性炭。果壳活性炭WP 2 0 2的吸附等温线方程为 qe=11 45C0 39e ,其粉状炭在 10min时能达到吸附容量的 98%。活性炭颗粒小则吸附速度快 ,温度升高不利于吸附。活性炭与水中的氯反应后 ,吸附性能下降 3 0 % ,在含盐量 2 0 0 0mg/L的苦咸水中吸附量降低 5 %。处理化学战剂 -沙林染毒水宜多种水处理技术相结合 ,并采用活性炭吸附作为最后一级处理单元  相似文献   

13.
粉末活性炭(PAC)是应对季节性嗅味问题的主要处理技术,选择合适的活性炭、确定投加条件等因素对于水厂的高效运行等具有重要意义。针对南方某水厂存在的季节性嗅味问题,选择了国内9种常用PAC(包括3种煤质炭,3种木质炭,3种椰壳炭),对其吸附能力及处理成本进行比较,同时对该水厂在用PAC的处理效果、原有预氧化工艺(预加次氯酸钠及高锰酸钾)的影响等条件进行评价。结果表明:9种PAC中碘值为1 030mg·g~(-1)的椰壳炭吸附能力最强,对150 ng·L~(-1)的2-甲基异崁醇(2-MIB)吸附容量为6.2 ng·mg~(-1)。水厂的预氧化工艺会显著降低PAC对2-MIB、土臭素(GSM)的吸附效果(分别降低29.5%、31.6%)。综合处理效果和经济成本后,碘值为800 mg·g~(-1)的煤质炭对该水厂水源条件下的嗅味问题处理效果最优,在将2-MIB浓度由150 ng·L~(-1)处理至嗅阈值以下时,水的活性炭处理成本为0.3元·t~(-1)。  相似文献   

14.
利用浸渍-碱性微波法制备载磁粉末活性炭,通过等温吸附实验和动力学吸附实验,研究对比了其与原料活性炭、浸渍载铁活性炭对壬基酚的吸附性能。采用氮气吸附仪、FTIR、XRD、国标(GB/T12496.19-1999)邻菲啰啉分光度法及VSM,分别对3种样品进行了物相结构、表面官能团、铁含量及磁性能的分析,并探讨了吸附机理。结果表明,浸渍-碱性微波法载磁活性炭的总孔容及孔隙率均有较大提高;其吸附等温线符合Freundich方程,吸附动力学过程符合准二级动力学方程与孔道内扩散模型,相关系数R2均大于0.900。原活性炭经一定浓度的铁盐溶液浸渍后,铁含量由2%提高到8%。在碱性、N2气氛条件下微波后,铁系物主要存在形式为零价铁和Fe3O4,制得的载磁活性炭饱和磁化强度为1.12 emu/g。  相似文献   

15.
活性炭在不同浓度NaNO_3溶液中对硝基苯的吸附   总被引:1,自引:0,他引:1  
研究了活性炭在不同浓度NaNO3溶液中对硝基苯的吸附行为,着重考察活性炭对硝基苯的吸附规律。结果表明,活性炭对硝基苯的吸附量大、吸附速度快,其吸附动力学可以用Lagergren伪二级速率方程很好拟合,吸附过程是双速过程;活性炭对硝基苯的吸附等温线符合Langmuir吸附等温式;不同浓度NaNO3溶液,对活性炭吸附硝基苯有很大影响。吸附动力学和吸附等温线实验均表明在低浓度和高浓度的NaNO3溶液中,活性炭对硝基苯的吸附量小于其在无NaNO3溶液中对硝基苯的吸附量,而在中等浓度的NaNO3溶液中,活性炭对硝基苯的吸附量大于其在无NaNO3溶液中对硝基苯的吸附量。  相似文献   

16.
采用活性炭为催化剂,对微波辅助空气氧化水溶液中的五氯酚进行了处理研究.考察了活性炭投加量、微波功率、辐射时间和通气量对溶液中五氯酚的去除率的影响.结果表明,在通气量为0.2 L/min,微波功率800 W和微波辐射60 min时,五氯酚的去除率可达到90%以上;对微波辐射前后的滤液进行紫外扫描和pH分析,可证实五氯酚被降解.  相似文献   

17.
采用臭氧曝气法、粉末活性炭吸附法、颗粒活性炭过滤法、臭氧曝气-粉末活性炭吸附联用法、空气曝气-粉末活性炭吸附联用法对沼液中的氨气、硫化氢、吲哚、挥发酚类等主要致嗅物质的去除情况进行了研究,同时分析了不同方法对沼液中营养物质TN、DN、TP、DP等的影响。结果表明,采用粉末活性炭吸附法处理沼液,臭味物质的去除情况以及营养物质的保留效果最好,当粉末活性炭投加量为15 000 mg/L时,沼液中的硫化氢、吲哚、挥发酚已经完全去除,氨氮、氨气的去除率分别为11.42%、13.98%;DN、DP含量分别减少了10.46%、19.53%,但是TN、TP含量分别增加了6.26%、9.63%。  相似文献   

18.
采用粉末活性炭(PAC)-超滤(UF)组合工艺处理污水处理厂二级出水,探讨不同PAC投加量下PAC-UF组合工艺对溶解性有机物(DOC)及抗生素抗性基因(ARGs)的去除效果,分析PAC对UF膜污染的缓解机制。结果表明,与直接UF相比,PAC-UF组合工艺可有效降低出水DOC和ARGs含量;水中4种ARGs与微生物含量、整合子intI1、DOC浓度间呈显著相关关系,说明去除上述指标有助于削减不同类型ARGs;PAC可吸附水中小分子量有机物,提高膜比通量,改善UF膜的反冲洗效果,PAC投加量为20mg/L时效果最好;PAC投加量增加可使滤饼层变得致密,使UF膜的不可逆污染阻力下降,但总污染阻力增加;直接UF与PAC-UF组合工艺的膜污染主导机制均为滤饼层污染,其中PAC-UF组合工艺受滤饼层污染机制影响更大。综合考虑污染物去除及膜污染缓解效果,采用低投加量(20mg/L)的PAC-UF组合工艺处理二级出水最为适宜。  相似文献   

19.
污泥-秸秆基活性炭的制备及其对渗滤液COD的吸附   总被引:5,自引:0,他引:5  
以市政污泥与玉米秸秆为原料,采用化学活化法热解制备污泥-秸秆基活性炭,研究其物化性质、热解动力学特性及对渗滤液中COD的吸附性能。考察吸附剂投加量、吸附时间和溶液p H对COD去除率的影响,并用吸附等温线对吸附数据进行了拟合。结果表明,秸秆比例越高,活性炭的吸附碘值和BET比表面积越大,最大可达663 mg/g和902 m2/g;活性炭表面呈不规则的多孔状;秸秆比例为45%的活性炭在最佳实验条件下对COD的吸附去除率为82%;活性炭对COD的吸附符合Langmuir和Freundlich等温模型。  相似文献   

20.
以核桃外果皮制备活性炭及改性活性炭,对制得的活性炭进行表征,研究了5种活性炭对重金属Cu~(2+)的吸附性能。研究表明,以氯化锌为活化剂制得的活性炭,其碘吸附值及表面酸性基团含量均高于磷酸活化制备的活性炭,改性后的活性炭吸附性能明显增强,碘吸附值最高达到678.53 mg·g~(-1),对Cu~(2+)的最高去除率达到91.43%。吸附量和Cu~(2+)去除率随时间、温度和p H的升高而增大,5种活性炭投加量增加,导致吸附量减小,但Cu~(2+)去除率增大,吸附平衡时间为3 h。5种活性炭对Cu~(2+)的吸附均符合准二级动力学模型。磷酸和氯化锌活化的活性炭吸附等温线符合Tempkin模型,而3种改性活性炭的吸附等温线则较好地符合Langmuir模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号