首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
研究了pH、接种量、无机盐(通过加入磷酸二氢钾进行无机盐补充)及DO等对产朊假丝酵母处理马铃薯淀粉废水的影响.结果表明.在pH为5.0、产朊假丝酵母接种量为10%(体积分数)、磷酸二氢钾(质量分散为0.1%)加入量为0.5 g/L、废水不灭菌的条件下,废水处理效果和产朊假丝酵母生长最佳.且当废水COD为5 074 mg/L时,COD去除率达到74.86%,同时可获得2.23g/L的单细胞蛋白.产朊假丝酵母处理马铃薯淀粉废水的最佳条件的实验研究对实现马铃薯淀粉废水资源化利用提供了理论参考.  相似文献   

2.
以选取微生物絮凝剂的廉价培养基为研究目的,从活性污泥中筛选微生物絮凝剂产生菌,选取白醋废水为廉价培养基代替发酵培养基对菌种进行培养,通过单因素培养条件优化,考察了不同体积分数废水、外加碳源、外加氮源、培养时间和pH值对微生物絮凝剂产生菌的絮凝率的影响,通过P-B筛选与响应面分析相结合用于优化白醋培养基培养条件,并对实际造纸废水进行处理研究。实验结果表明,经过预处理灭菌后,单独以白醋废水作为廉价培养基,最适条件为体积分数80%、转速140 r·min~(-1)、培养时间48 h、温度32℃、pH 6.88、磷酸氢二钾4.08 g·L~(-1)、氯化铵2.39 g·L~(-1),并对造纸废水加以处理,絮凝率达96.77%,COD去除率56.13%,色度去除率95.60%。因此,利用白醋废水作为微生物絮凝剂的替代培养基是完全可行的,并且可以用于实际废水的处理,达到以废治废的目的。  相似文献   

3.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L~(-1)、臭氧进气量为600 mL·min~(-1)、催化剂用量为1 g·L~(-1)、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L~(-1)降至125 mg·L~(-1),BOD_5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L~(-1)、平均NH_4~+-N为12 mg·L~(-1)、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH_4~+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH_4~+-N分别为46 mg·L~(-1)和4.1 mg·L~(-1),出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH_4~+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

4.
针对石化废水难以达到地方新标准的问题,通过DNF-O_3-BAC工艺对石化废水进行深度处理,采用紫外分光光度法、重铬酸钾氧化法等方法对出水中各类氮浓度、COD、UV_(254)以及分子质量分布进行了检测;研究了不同碳源及C/N比对DNF单元反硝化性能的影响,并探究了DNF-O_3-BAC工艺深度处理石化废水的机理。结果表明:当水力停留时间为2 h,乙酸钠为最佳碳源,在C/N为4的条件下,NO_3~--N去除率达到96.7%,且几NO_2~--N积累;O_3的最佳投加量为20 mg·L~(-1)时,此时COD的去除率为45%左右,B/C稳定在0.2以上,UV_(254)去除率达到14%;在O_3投加量为20 mg·L~(-1)的条件下,最优接触时间为40 min,此时COD去除率达到42%,B/C稳定在0.28,UV_(254)的去除率达到34%左右;相比原水,分子质量≤1 kDa的有机物的比例从69%上升到86%。各单元最优条件下的DNF-O_3-BAC工艺出水中COD为25 mg·L~(-1),UV_(254)稳定在0.11,TN为2 mg·L~(-1)。DNF-O_3-BAC工艺实现了石化废水中有机物和TN的降解,达到了地方标准。  相似文献   

5.
UASB-SBR工艺处理规模化畜禽养殖废水   总被引:1,自引:0,他引:1  
针对规模化畜禽养殖废水常规厌氧-好氧组合处理工艺及SBR处理工艺脱氮效率低、运行费用高等问题,采用UASB-SBR工艺,研究3种不同的SBR模式对处理效果的影响。结果表明,UASB容积负荷(以COD计)8 kg·(m~3·d)-1、pH 7.0、温度35℃、HRT 25 h时,COD去除率为80%~85%;SBR在进水15 min、反应480 min、沉淀60 min、出水15 min、闲置810 min条件下,对废水COD、NH_4~+-N、和TN去除率分别为91.8%、98.7%和71.6%,出水COD≤180 mg·L~(-1)、NH_4~+-N15 mg·L~(-1)、TN50 mg·L~(-1),达到《畜禽养殖业污染物排放标准》(GB 18596-2001)。该运行条件下NO_2~--N积累率超过50%,出现了NO_2~--N积累,短程硝化反硝化是主要脱氮方式。  相似文献   

6.
采用UV-Fenton联合的方法处理紫胶漂白废水,单因素实验研究了H_2O_2用量、FeSO_4用量、反应时间和初始pH值对紫胶漂白废水降解的影响,并通过数学回归模型和响应曲面法优化得到UV-Fenton深度处理紫胶漂白废水的最优条件:初始pH值5.0,H_2O_2用量49 g·L~(-1)、FeSO_4用量2.6 g·L~(-1)、反应时间为4 h。经最优工艺条件深度处理后的紫胶漂白废水COD、BOD_5、悬浮物、色度、总氮和总磷分别降低至48 mg·L~(-1)、32 mg·L~(-1)、27.3 mg·L~(-1)、24 NTU、0.027 mg·L~(-1)、0.021 mg·L~(-1),除BOD5稍高外,其余指标均达到污水综合排放一级标准。在最优条件下,以紫胶漂白废水COD值和COD去除率为指标的降解动力学模型可分别表示为:lny=0.034 98+0.001 85x+6.898×10~(-6)x2和z=95.36-92.78×0.9706t。由动力学方程可看出,废水COD值在反应开始的前2 h内,降低幅度接近90%,且以反应开始时最为剧烈,随着反应的进行,反应剧烈程度迅速减弱。  相似文献   

7.
针对制革废水高COD、高总氮的问题,提出了基于上流式厌氧污泥床(UASB)、上流式反硝化污泥床(UDNSB)、生物接触氧化池的生物处理组合工艺,进行了为期321 d的现场中试研究。研究结果表明,对于COD、TN、NH_4~+-N平均浓度分别为2 740、278和193 mg·L~(-1)的制革废水,在硝化液回流比R为300%,UASB反应器、UDNSB反应器、生物接触氧化池的水力停留时间(HRT)分别为11、22和57 h,平均容积负荷分别为5.63 kg COD·(m~3·d)~(-1)、0.30 kg TN·(m~3·d)~(-1)和0.11 kg NH+4-N·(m~3·d)~(-1)的条件下,该组合工艺处理出水COD、TN和NH_4~+-N的平均浓度分别为190、69.8和4.6 mg·L~(-1),其平均去除率分别达到92%、73%和97%以上。  相似文献   

8.
采用4级生物膜反应器串联处理煤气化废水,分析了反应器的启动过程、污染物去除能力及沿程水质特征,考察了水力停留时间(HRT)、进水污染物负荷对处理效果的影响。结果表明:系统在16 d的培养时间内可快速完成微生物的驯化及固定化;在连续进水、持续曝气的运行方式下,各反应器均具备对NH_4~+-N、COD、TN及SS的同步去除能力,在HRT=55.6 h、ρ(NH_4~+-N)=245~363 mg·L~(-1)、ρ(COD)=761~1 764 mg·L~(-1)、ρ(TN)=262~377 mg·L~(-1)、ρ(SS)=121~143 mg·L~(-1)的进水条件下,反应器出水NH_4~+-N、COD、TN及SS的质量浓度分别为0.23~1.37、16.3~26.1、91.6~139和12.3~18.5 mg·L~(-1),平均去除率分别为99.8%、98.1%、65.8%和88.2%,同步硝化反硝化效率为70.1%;在HRT≥39.2 h、进水NH_4~+-N负荷≤0.203 kg·(m~3·d)~(-1)、进水COD负荷≤1.357 kg·(m~3·d)~(-1)的条件下,出水NH_4~+-N、COD浓度均能满足GB 31571-2015排放标准要求。  相似文献   

9.
采用两级串联间歇曝气序批式反应器(intermittent aeration sequencing batch reactor,IASBR)处理高氨氮低碳氮比的垃圾渗滤液,研究在控温(25±2)℃,进水碳氮比(COD/TN)为3.0条件下的脱氮性能。进水氨氮(NH_4~+-N)和总氮(TN)浓度分别为(1 100±70)mg·L~(-1)和(1 520±65)mg·L~(-1),1级和2级IASBR的水力停留时间(HRT)分别为5 d和4 d。运行结果表明,经1级IASBR处理后,出水TN浓度降低至约250 mg·L~(-1),其中以有机氮(TON)为主,NH_4~+-N浓度约25 mg·L~(-1);经2级IASBR处理后,出水TN和NH_4~+-N浓度分别稳定在40 mg·L~(-1)和20 mg·L~(-1)以下,TON去除率高达90%以上。两级串联IASBR组合工艺表现出良好的深度脱氮性能,出水TN浓度稳定达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中TN≤40 mg·L~(-1)的排放标准;同时,1级IASBR出水COD浓度高达1 150 mg·L~(-1),经过2级IASBR处理后出水COD降至约770 mg·L~(-1)。  相似文献   

10.
采用混凝-两级厌氧/缺氧/好氧-膜生物反应器(A3-MBR)处理实际餐厨垃圾发酵废液,通过对运行参数进行优化确定最优工况,并考察其在该条件下长期运行的处理效果。结果表明,混凝预处理的最适pH为8,最佳混凝剂投加量为1 000 mg·L~(-1)。A3-MBR系统在最优运行条件:总HRT为110 h,回流比为200%,进水COD负荷控制在2.3~3.6 g·(L·d)-1下可稳定运行。当系统进水COD、TN、NH3-N和TP浓度分别为(10 984±383)、(335.9±16.2)、(209.1±6.7)和(37.2±2.3)mg·L~(-1)时,系统进水有机负荷为2.3~3.5 g·(L·d)-1,在最优条件下处理系统出水的COD、TN、NH3-N和TP分别为(202±23)、(62.1±7.1)、(0.33±0.13)和(8.3±0.9)mg·L~(-1),其去除率分别为98.2%、81.5%、99.8%和77.8%。A3-MBR系统对有机物具有良好的去除效果,厌氧段未积累挥发性脂肪酸。最终出水中溶解性有机物主要为II区芳香族蛋白质类似物,残留的挥发性有机物以酯类物质为主。  相似文献   

11.
探索了冷冻结晶工艺去除高盐高浓度模拟有机废水的影响因素,将多级冷冻工艺应用于模拟废水和实际废水。结果表明:在其他因素固定的条件下,结冰率越高,有机物去除率和脱盐率就越低;冷冻温度越低,有机物去除率和脱盐率越低;有机物去除率和脱盐率随初始盐浓度或初始COD的增大而降低;冷冻接触面积越大,有机物去除率和脱盐率越高。初始COD为8 000.0 mg·L~(-1),初始盐浓度为8 000.0 mg·L~(-1)的模拟废水在4级冷冻后,COD和含盐量分别降低至240.0 mg·L~(-1)和516.9 mg·L~(-1),去除率分别为97.0%和93.5%。初始COD为55 690.0 mg·L~(-1),初始盐浓度为54 648.9 mg·L~(-1) (以NaCl计)的实际化工废水在经过6级冷冻处理后,COD和含盐量分别降低至491.3 mg·L~(-1)和983.3 mg·L~(-1),有机物去除率为99.1%,脱盐率为98.2%,可达到市政管网的接管要求。上述研究结果为高盐高浓度有机废水的处理提供了新的解决方案。  相似文献   

12.
为实现处理焦化废水的颗粒污泥的快速培养,进而高效处理焦化废水,在22~27℃环境温度下,平行运行2个EGSB反应器,用焦化废水驯化处理啤酒废水颗粒污泥,对微氧运行(与厌氧对比),有机营养物添加(厌氧、微氧运行)、无机碳营养添加(厌氧、微氧运行)3种情况时的污染物质(COD)去除效果进行实验研究。研究结果表明:与厌氧相比,微氧运行能够明显强化焦化废水中毒性污染物质的去除。在焦化废水驯化初期,多次水质冲击(1 500 mg·L~(-1)COD,220 mg·L~(-1)氨氮→2 000 mg·L~(-1)COD,70 mg·L~(-1)氨氮→700 mg·L~(-1)COD,104~220 mg·L~(-1)氨氮),微氧运行时COD平均去除率为24.8%(厌氧运行时仅为5.16%)。微氧运行虽然保证了污泥床的有效膨胀,但COD去除率的提高仍然有限。有机营养物的添加并没有使得COD去除率大幅提高,厌氧时为22.8%,微氧时为37.5%。无机碳营养(碳酸氢钠)的添加能够大幅提高焦化废水中COD去除率,厌氧时提高到53.8%;微氧时提高到75.4%,增幅分别达到31.0%和37.4%。微氧运行条件与无机碳营养的耦合作用能强化焦化废水中COD的去除,快速驯化培养处理焦化废水颗粒污泥。通过给处理焦化废水微氧EGSB反应器内添加碳酸氢钠,40 d就能完成高活性颗粒污泥的培养,高效处理焦化废水中各种污染物质。进水COD、酚类、氰化物和硫氢化物分别为54.8—1 927 mg·L~(-1),10.1—154.3 mg·L~(-1),0.9—57.8 mg·L~(-1)和66.7—340.4mg·L~(-1)、进水流量1.2 L·h-1、HRT10 h时,COD去除率达到78%~86%,酚类、氰化物、硫氢化物的平均去除率分别高达98.9%、93.1%和97.5%。  相似文献   

13.
针对颜料废水有机物浓度含量高、水质波动大、可生化性差等特点,实验采用了UASB-PACT(powdered activated carbon treatment)组合工艺在常温下对颜料废水进行中试研究。实验共进行了119 d,分2个阶段进行,第1阶段为低浓度运行阶段,进水COD逐步提升至3 000 mg·L~(-1)左右,经过36 d的运行,系统出水COD可稳定保持在500 mg·L~(-1)以下,UASB、PACT反应器对COD的平均去除率分别为37.0%和80.5%;第2阶段为负荷提高阶段,共运行了83 d,UASB、PACT反应器对COD的平均去除率分别为53.9%和81.7%。76 d后在平均进水浓度为6 207.75 mg·L~(-1)的条件下,出水COD500 mg·L~(-1)。在工程应用阶段,经过6个月的调试,在进水量1 920 m3·d-1、COD为5 000 mg·L~(-1)的条件下,UASB反应器的出水COD1 500 mg·L~(-1),PACT出水COD在300~500 mg·L~(-1)之间波动,去除率分别为50.9%和75.3%。实验结果表明,针对有机颜料废水,采用UASB-PACT组合工艺能够达到很好的处理效果,出水满足《污水排入城镇下水道水质标准》(CJ 343-2010)中A级排放要求。  相似文献   

14.
采用接触氧化工艺代替传统A~2O工艺中的活性污泥法来处理皮革废水,研究缺氧HRT、好氧HRT、混合液回流等因素对系统处理效果的影响。结果表明,在进水COD、氨氮以及TN分别为550~986,84~127,99~148 mg·L~(-1)的情况下,取消缺氧段以及混合液回流,控制好氧HRT=18 h,好氧柱DO为2.5~3.5 mg·L~(-1),好氧柱内发生了同步硝化反硝化,系统COD、氨氮以及TN的平均去除率分别为74.76%、98.35%以及67.63%。生化出水氨氮达到广东省《水污染排放限值》(DB 44/26-2001)第2时段一级标准。采用Fenton工艺深度处理生化出水,在m_(H_2O_2)/m_(COD)=1.5,m_(Fe~(2+))/m_(COD)=0.2,pH=3以及反应时间为4 h的反应条件下,可以将COD由150~220 mg·L~(-1)降至100 mg·L~(-1)以内。  相似文献   

15.
对于COD值为131 200 mg·L~(-1),苯酚浓度值为45 600 mg·L~(-1),甲醛浓度值为1 500 mg·L~(-1)的酚醛树脂废水,通过显微镜观察得知以苯酚为主的有机组分以稳定乳化状态存在。采用盐析-冰冻法对酚醛树脂废水进行破乳处理的实验研究表明,添加35%Na Cl、在-7℃条件下进行冰冻处理后,废水COD值和苯酚浓度值、甲醛浓度值分别降至28 720、6 310和1 359 mg·L~(-1),去除率分别为78.11%、86.16%和9.40%,实验证明盐析-冰冻法预处理酚醛树脂废水可行。  相似文献   

16.
为了实现印染废水的高标准排放,构建了生物吸附/MBBR/混凝沉淀池/硫铁自养反硝化/活性焦组合工艺,并对其进行了优化运行研究;考察了不同水力停留时间(HRT)和溶解氧(DO)对系统污染物去除的影响。结果表明:生物吸附池和MBBR池的HRT分别为1 h和10 h、DO分别为1 mg·L~(-1)和5 mg·L~(-1)的情况下,污染物的去除效果最佳;其中,COD的去除率达到98%;在最优条件下,组合工艺出水COD、NH4+-N、TP和TN浓度分别为16、0.56、0.32和1.39 mg·L~(-1),污水色度基本完全去除。该组合工艺实现了印染废水的高标准排放,为印染废水处理的工程应用提供了数据和技术支撑。  相似文献   

17.
针对黑水污染物浓度高、悬浮成分多、碳氮磷比例失调等问题,小试条件下探索了采用倒置AAO-MBR工艺处理黑水的技术可行性,开展了水温、水力停留时间、外加碳源和溶解氧对主要污染物去除的影响。结果表明:冬季低温、HRT为42 h与夏秋季HRT为31 h的除污效果相近,出水的COD、氨氮、TN分别为110、26.7和104.5 mg·L~(-1);碱度是影响氨氮去除效率的最主要因素;HRT为31 h条件下,未加外碳源(C/N为3.14)时,COD、氨氮、TN平均去除率分别为83.8%、88.2%和52.9%,磷酸盐没有去除效果;外加碳源至C/N为4.63,COD、氨氮、TN和磷酸盐的平均去除率分别提高到93.4%、98.1%、91.3%和20.7%;随着运行时间的延长,MBR出水COD呈下降趋势,平均达到56 mg·L~(-1),达到一级B排放标准;好氧区的DO控制0.2~0.4 mg·L~(-1)时生物脱氮效率较佳。  相似文献   

18.
针对厨余垃圾的短程自由发酵过程,考察了不同初始固体浓度在60 h内对发酵过程和发酵产物的影响,结果表明,短程自由发酵是一种不完全的水解酸化过程,初始固体浓度为(13±0.5)%时有机酸(以COD计)产量最高(16.56 g·L~(-1))。短程发酵液是以碳水化合物为主,同时也包含了乳酸、乙酸、蛋白质和丁酸等的混合物碳源。发酵液的反硝化性能通过硝酸盐利用速率(NUR)实验来验证,结果表明COD/N=6是最优条件,该条件下的反硝化速率v_(DN)=12.89 mg·(g·h)-1(以VSS计)和反硝化能力P_(DN)=0.174 g·g~(-1)(以COD计),同时短程发酵液中快速降解有机物组分为58.35%。  相似文献   

19.
采用Fe/C微电解耦合H_2O_2工艺对经复合混凝处理后的某页岩气井钻井废水进行处理,考察了Fe/C质量比、Fe/C投加量、溶液pH值、气水比、H_2O_2(30%)投加量和反应时间对COD去除率的影响。结果表明,耦合工艺最佳实验条件为Fe/C质量比1∶1、Fe/C投加量500 g·L-1、溶液pH值2.5、气水比20∶1、H_2O_2(30%)投加量6 m L·L-1、反应时间120 min。最佳工艺条件下,页岩气钻井废水经处理后,出水COD质量浓度为89.54 mg·L~(-1),去除率达到81.60%。  相似文献   

20.
为了解决常规污水处理技术无法进行完整的硝化反硝化过程,污水厂出水中氨氮、总氮、总磷偏高以及运行成本较高的问题,以某污水厂排水为研究对象,通过物化与生化耦合,构建化学催化生物耦合床(CCBF)脱氮系统,研究CCBF系统对污水厂排水中氨氮、总氮、总磷和COD的去除效能。结果表明:当DO为5.5~6.0 mg·L~(-1)、RT为8 h、C/N为1.5∶1时,CCBF可将NH_4~+-N从48.5 mg·L~(-1)降至4.58 mg·L~(-1)、TN从51.2 mg·L~(-1)降至6.5mg·L~(-1)、 TP从6.6mg·L~(-1)降至0.48mg·L~(-1)、 COD从78.5mg·L~(-1)降至33mg·L~(-1),去除率分别达到89.5%、85.7%、92.5%和57.9%;污水经处理后,氨氮、总氮、总磷、COD均达到城镇污水处理厂污染物排放标准(GB18918-2002)一级A排放标准。利用Eckenfelder方程对系统脱氮过程进行模拟,求得n_(NH_4~+-N)=0.314 764,n_(TN)=0.282 21,K_(NH_4~+-N)=0.128 024,K_(TN)=0.218 59,与水力负荷为0.000 8~0.007 m~3·(m~2·min)~(-1)的常规生物处理相比,系统内部生物量充足、活性高,物化与生物耦合强化效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号