首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growing concerns about water eutrophication made it imperative to control phosphorus (P) losses from agricultural soil to water. A Quantity-Intensity (Q-I) relationship that reflects the potential of soil P release to water was developed on the calcareous purple soil in southwestern China. Results showed that a change point appeared at 30 mg kg−1 for Olsen-P and 22 mg kg−1 for iron-oxide impregnated strips extracted P (FeO-P), respectively, on the curve of CaCl2-P against soil test P (STP). Above the change point, the P release was much more rapid with the increase of STP. Therefore, a threshold in STP was derived to support P source management practices on the soil.  相似文献   

2.
Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha?1) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5–91.2 % and the concentrations of Cd and Pb in brown rice by 20.9–50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha?1) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.  相似文献   

3.
Drained peatlands are an important source of forest biomass in boreal regions and ditch network maintenance (DNM) operations may be needed to restore the drainage functions of ditches. By reviewing the available literature, as well as utilizing an existing hydrological model and analyzing the characteristics of eroded sediments, we assessed the impacts of DNM on runoff and exports of suspended solids (SS), dissolved organic carbon (DOC), nitrogen (N), and phosphorus (P). In general, DNM had minor impact on runoff and dissolved N and P, and it decreased rather than increased DOC exports. To increase the understanding of the hydrochemical impacts of DNM, future research should focus on the characteristics of SS and particulate nutrient exports. A major gap in knowledge is also the very limited regional representativeness of the available studies. High erosion risk in the ditches reaching the mineral soil below peat should be acknowledged when planning mitigation measures.  相似文献   

4.
The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities.  相似文献   

5.
Given the difficulties caused by low-permeable soils in bioremediation, a new electrokinetic technology is proposed, based on laboratory results with phenanthrene, to afford bioremediation of polycyclic aromatic hydrocarbons (PAH) in clay soils. Microbial activity in a clay soil historically polluted with creosote was promoted using a specially designed electrokinetic cell with a permanent anode-to-cathode flow and controlled pH. The rates of phenanthrene losses during treatment were tenfold higher in soil treated with an electric field than in the control cells without current or microbial activity. Results from experiments with Tenax-assisted desorption and mineralization of 14C-labeled phenanthrene indicated that phenanthrene biodegradation was limited by mass-transfer of the chemical. We suggest that the enhancement effect of the applied electric field on phenanthrene biodegradation resulted from mobilization of the PAH and nutrients dissolved in the soil fluids.  相似文献   

6.
Soil phosphorus (P) quantity-intensity (q-i) relationships, based on common extraction methods, may potentially be used to estimate the risk of P loss in overland flow and subsurface drainage water. Some workers have used nonlinear q-i relationships to derive thresholds in soil test P (STP; a quantity factor) above which the risk of P loss increases, while others find linear relationships and no threshold. We present here a simple modelling exercise (based on Langmuir adsorption theory) along with data from literature to explain the behaviour of q-i relationships, and to give an explanation for this apparent discrepancy. The data indicate that q-i relationships are dependent upon the soil to solution ratio of the P intensity parameter, adsorption capacity (Qmax) and strength (K) of the soil, and the total range in STP. In turn, this affects the calculation of a threshold in STP. The q-i relationship tends towards linearity under conditions of a narrow total range of STP and/or when using a wide soil to solution ratio for estimating the P intensity parameter. Under such conditions, a threshold is difficult to detect, and uncertain. We conclude that the sensitivity of thresholds to experimental conditions and soils needs to be considered if thresholds are to be successful in environmental management to decrease P loss to surface waters.  相似文献   

7.
Mendoza C  Assadian NW  Lindemann W 《Chemosphere》2006,63(11):1933-1941
The determination of nitrogen (N) based loading rates for land application of biosolids is challenging and site specific. Over loading may contribute to environmental, agricultural, or human health problems. The objective of this study was to monitor N mineralization and losses in a moderately alkaline and calcareous desert soil amended with either anaerobically digested (AN) or lime-stabilized (LS) biosolids, and irrigated with and without urea enriched water. For Experiment 1, N inputs, leaching and residuals in soil were evaluated in an open soil column system. For Experiment 2, ammonia (NH3) emissions were evaluated in a closed soil column system. In Experiment 1, AN and LS biosolids increased soil ON (organic N) by three and two fold, respectively. Respective net N mineralization of ON from biosolids alone was 90% and 62% without urea, and 71% and 77%, respectively with added urea. Nitrogen leaching losses and residuals in amended soil did not account for all N inputs into the soil/biosolids system. In Experiment 2, NH3 emissions were not significantly different among treated soils with or without added urea, except LS amended soil receiving urea. Ammonia losses did not account for unaccounted N in Experiment 1. We concluded that deep placement and rapid mineralization of AN biosolids promoted anaerobic soil conditions and denitrification, in addition to the high denitrification potential of desert soil. LS biosolids showed greater potential than AN biosolids for safe and beneficial land application to desert soils regardless of biosolids placement and the inclusion of N rich irrigation water.  相似文献   

8.
Marc I. Stutter 《Ambio》2015,44(2):207-216
Concerns about the sustainability of inorganic fertilizers necessitate the characterization of alternative P source materials for agronomic P-efficiencies and P losses via leaching. Firstly, this study examined nutrient compositions including P speciation of seven soil amendments: sewage sludge (SS), anaerobic digestate (AD), green compost (GC), food waste compost (FWC), chicken manure (CM), biochar, and seaweed. Secondly, soil P leaching and availability was studied on a subset of four materials (SS, AD, GC, and CM). Sorption of extracts onto columns of a test soil showed strong P retention for SS and compost, but weak P sorption for CM and especially AD, suggesting short-term leaching risks for soil applied AD. Limited P desorption with water or citrate indicated sorbed P was strongly fixed, potentially limiting crop availability. These data indicate that variation in P forms and environmental behavior should be understood to maximize P usage, but minimize leaching and soil P accumulation. Hence, different alternative P source materials need differing recommendations for their agronomic management.  相似文献   

9.
Anderson R  Wu Y 《Chemosphere》2001,42(2):161-170
Soils from a long-term slurry experiment established in 1970 at Hillsborough, Northern Ireland, were used in the experiment. The site has a clay loam soil overlying Silurian shale. Seven treatments were used with three replicate plots per treatment. Control plots were treated with mineral fertiliser supplying 200 kg N, 32 kg P and 160 kg K ha(-1) yr(-1). Slurry treatment plots were in two blocks and treated with either pig or cow slurry supplied at 50, 100 or 200 m3 ha(-1) yr(-1). Agronomic measures of P determined on 10-cm soil cores were compared with measured P quantity/intensity (Q/I) parameters from fitted sorption and desorption isotherms. Phosphorus affinity constant was found to be significantly and negatively correlated with P loading of soils. Desorption rate coefficient also increased significantly with increase in P loading from slurry, although there was no significant difference between slurry types (cow vs. pig). In contrast, while agronomic measures of P (water-soluble P, Olsen P, calcium chloride-extractable P, degree of P saturation (DPS)) also correlated significantly with P loading and total P (TP) in the soils, there was a separation and significant differences between the cow and pig slurry treatment blocks, with the former being much lower. Phosphorus inputs to pig slurry treated plots were much higher than to equivalent cow slurry plots over the first 15 years of the study but declined sharply over the most recent 10 years to more or less par. Conventional measures of agronomic P such as Olsen P and DPS, measure only P accumulation over the longer term and indicated only the higher content of P accumulating in soil of pig slurry treatments. Risk of P loss estimated by Q/I parameters appeared to show very similar behaviour between the two slurry types in line with more recent manurial additions but in contradiction of P accumulation statistics.  相似文献   

10.
11.
A pot experiment was conducted to investigate the effect of application of naturally derived dissolved organic compounds (DOC) on the uptake of Cd, Ni and Zn by Lolium perenne L. from mixtures of soil and sewage sludge and on their extractability with CaCl2. DOC was applied at concentrations of 0, 285 and 470 mg l(-1) to a loamy sand (LS) and a sandy clay loam (SCL) soil mixed with sewage sludge at rates equivalent to 0, 10 and 50 t ha(-1). DOC applications significantly increased the extractability of metals and also their uptake by ryegrass, but the increase was greater where sludge was applied at 50 t ha(-1). It is suggested that DOC in soils significantly increased the availability of the metals to plants. This was especially the case in the LS soil, where DOC had less competition with surface sorption than in the SCL soil.  相似文献   

12.
Oryzalin fate and transport in runoff water in Mediterranean vineyards   总被引:3,自引:0,他引:3  
An experimental study was conducted in a 91.4-ha Mediterranean vineyard catchment in southern France to characterize the fate and transport of oryzalin in runoff water and thus to assess the risk of contamination of surface waters. Oryzalin concentrations in soil were monitored on two fields, one no-till and one tilled from March 1998 to March 2000. Concentrations in solution and on solid phase of runoff water were measured at the outlets of both fields and the catchment. The droughts in the two summer periods reduced the dissipation of oryzalin and increased its field half-life up to 35 days. Consequently, oryzalin was detected throughout the year in runoff water, with maximum dissolved concentrations > 600 microg l(-1) at the field scale. Oryzalin transport essentially occurred in solution. At the no-till field, seasonal losses were 2.29% and 1.89% of the applied amount in 1998 and 1999, respectively. The corresponding values at the tilled field were 1.56% and 0.29%, since tillage reduced total losses by reducing surface runoff. At the catchment scale, oryzalin concentrations were smaller than those at the field scale, due to dilution effects and staggering of application. Large part of the overland flow from the fields reinfiltrated in the ditches before reaching the outlet of the catchment. As a result, seasonal oryzalin losses were <0.2% of the applied amount.  相似文献   

13.
During the last 50 years nitrate concentrations in Buttermere and Wastwater (Cumbria, UK) have risen significantly, by 70 and 100%, respectively. By estimating contemporary nitrate fluxes in the lakes' catchments and in sub-catchments and comparing them with the fractional areas of different soil types, it is deduced that the surface water nitrate is derived almost entirely from organic-rich ranker soils that have a limited ability to retain atmospherically-deposited nitrogen. Little or no nitrate leaches from the other major soil type, a brown podzol, despite it having a lower C:N ratio (12.0 g g(-1)) than the ranker (17.0 g g(-1)), nor is there much contribution from the small areas of improved (chemically fertilised) grassland within the catchments. Although some nitrate leaching is occurring, total N losses are appreciably smaller than atmospheric inputs, so the catchment soils are currently accumulating between 3 and 4 g N m(-2) a(-1).  相似文献   

14.
Research was conducted on nitrogen (N) surface run-off losses following organic manure applications to land, utilising a purpose-built facility on a sloping site in Herefordshire under arable tillage. Different rates and timing of cattle slurry, farmyard manure and inorganic N and phosphorus (P) fertiliser were compared, over a 4-year period (1993-97). P losses from the same studies are reported in a separate paper. The application of cattle slurries to the silty clay loam soil increased the loss of solids and NH4(+)-N in surface water flow compared to control plots receiving inorganic fertiliser only, or no treatment, but had little effect on NO3(-)-N losses by this route. Results were consistent with other observations that rainfall events immediately after manure applications are particularly likely to be associated with nutrient run-off losses. Losses via subsurface flow (30 cm interflow) were consistently much lower than via surface water movement and were generally unaffected by treatment. Increasing slurry application rate and, in particular, slurry solids loading, increased solids and NH4(-)-N losses via surface run-off. The threshold, above which the risk of losses via surface run-off appeared to be greatly increased, was ca. 2.5-3.0 t/ha slurry solids, which approximates to the 50 m3/ha limit suggested for slurry within UK 'good agricultural practice'. Sealing of the soil surface by slurry solids appears to be a possible mechanism by which polluting surface run-off may occur following slurry application on susceptible soils. Total losses of NH4(+)-N and NO3(-)-N during the 4-year monitoring period were insignificant in agronomic terms, but average soluble N concentrations (NH4(+)-N + NO3(-)-N) in run-off, ranging from ca. 2.0 mg/l, up to 14.0 mg/l for the higher rate slurry treatments. Peak concentrations of NH4(+)-N > 30 mg/l, are such as to be of concern in sensitive catchments, in terms of the potential for contribution to accelerated eutrophication and adverse effects on freshwater biota.  相似文献   

15.
Wang K  Zhang Z  Zhu Y  Wang G  Shi D  Christie P 《Chemosphere》2001,42(2):209-214
A long-term randomised block field experiment was established in 1997 to study the dynamics of total P and dissolved P in the surface waters of rice fields receiving two application rates of fertiliser P and one rate of combined fertiliser and manure P. Preliminary results from the first two crops show that concentrations of both total P and dissolved P in the surface waters increased significantly following P application, especially during the first 2 weeks after application. P concentrations subsequently declined sharply within about 10 days, then declined steadily and remained almost constant from about 1 month after application. The initial increase in P concentration of surface waters was higher with increasing rate of fertiliser P, and the P concentration at the highest fertiliser rate peaked within about 1 week of application. The elevated P concentrations following fertiliser P application declined more rapidly than those following the combined application of fertiliser and manure P. When fertiliser and manure P were applied together, about 7 days later the surface water P concentrations were significantly higher than when the same rate of P (or double) was applied as fertiliser only. Disturbance of the surface soil by hand harrowing further increased the P concentrations in surface waters, with a subsequent decline to a steady value after about 1 week. Application of P fertiliser to the high P status soil in this experiment gave no crop yield response and may have increased the risk of pollution of adjacent surface waters through drainage from heavy rainfall events during the rice growing season. Therefore, fertiliser P should not be applied to such soils. If, however, fertiliser or manure P is applied, the application should be made during the dry winter to reduce P losses. Manure should be applied with particular care because of the higher risk of P losses to surface water arising from the relatively long period of high P concentrations in surface waters and the potential for greater release of P to field surface waters from the soil. Hand harrowing should also be avoided during wet weather to protect water quality.  相似文献   

16.
Faruk Djodjic  Ana Villa 《Ambio》2015,44(2):241-251
Phosphorus losses from arable land need to be reduced to prevent eutrophication of surrounding waters. Owing to the high spatial variability of P losses, cost-effective countermeasures need to target parts of the catchment that are most susceptible to P losses. Field surveys identified critical source areas for overland flow and erosion amounting to only 0.4–2.6 % of total arable land in four different catchments in southern Sweden. Distributed modelling using high-resolution digital elevation data identified 72–96 % of these observed erosion and overland flow features. The modelling results were also successfully used to predict occurrence of overland flow and rill and gully erosion in a catchment in central Sweden. Such exact high-resolution modelling allows for accurate placement of planned countermeasures. However, current legislative and environmental subsidy programmes need to change their approach from income-loss compensation to rewarding high cost effectiveness of implemented countermeasures.  相似文献   

17.
Losses of phosphorus (P) from soil and slurry during episodic rainfall events can contribute to eutrophication of surface water. However, chemical amendments have the potential to decrease P and suspended solids (SS) losses from land application of slurry. Current legislation attempts to avoid losses to a water body by prohibiting slurry spreading when heavy rainfall is forecast within 48 h. Therefore, in some climatic regions, slurry spreading opportunities may be limited. The current study examined the impact of three time intervals (TIs; 12, 24 and 48 h) between pig slurry application and simulated rainfall with an intensity of 11.0?±?0.59 mm h?1. Intact grassed soil samples, 1 m long, 0.225 m wide and 0.05 m deep, were placed in runoff boxes and pig slurry or amended pig slurry was applied to the soil surface. The amendments examined were: (1) commercial-grade liquid alum (8 % Al2O3) applied at a rate of 0.88:1 [Al/ total phosphorus (TP)], (2) commercial-grade liquid ferric chloride (38 % FeCl3) applied at a rate of 0.89:1 [Fe/TP] and (3) commercial-grade liquid poly-aluminium chloride (10 % Al2O3) applied at a rate of 0.72:1 [Al/TP]. Results showed that an increased TI between slurry application and rainfall led to decreased P and SS losses in runoff, confirming that the prohibition of land-spreading slurry if heavy rain is forecast in the next 48 h is justified. Averaged over the three TIs, the addition of amendment reduced all types of P losses to concentrations significantly different (p?<?0.05) to those from unamended slurry, with no significant difference between treatments. Losses from amended slurry with a TI of 12 h were less than from unamended slurry with a TI of 48 h, indicating that chemical amendment of slurry may be more effective at ameliorating P loss in runoff than current TI-based legislation. Due to the high cost of amendments, their incorporation into existing management practices can only be justified on a targeted basis where inherent soil characteristics deem their usage suitable to receive amended slurry.  相似文献   

18.
The long-term impacts of current forest management methods on surface water quality in Fennoscandia are largely unexplored. We studied the long-term effects of clear-cutting and site preparation on runoff and the export of total nitrogen (total N), total organic nitrogen (TON), ammonium (NH4-N), nitrate (NO3-N), total phosphorus (total P), phosphate (PO4-P), total organic carbon, and suspended solids (SS) in three paired-catchments in Eastern Finland. Clear-cutting and soil preparation were carried out on 34 % (C34), 11 % (C11), and 8 % (C8) of the area of the treated catchments and wide buffer zones were left along the streams. Clear-cutting and soil preparation increased annual runoff and total N, TON, NO3-N, PO4-P, and SS loads, except for SS, only in C34. Runoff increased by 16 % and the annual exports of total N, TON, NO3-N, and PO4-P by 18, 12, 270, and 12 %, respectively, during the 14-year period after clear-cutting. SS export increased by 291 % in C34, 134 % in C11, and 16 % in C8 during the 14, 6, and 11-year periods after clear-cutting. In the C11 catchment, NO3-N export decreased by 12 %. The results indicate that while current forest management practices can increase the export of N, P and SS from boreal catchments for many years (>10 years), the increases are only significant when the area of clear cutting exceeds 30 % of catchment area.  相似文献   

19.
Effects of soil type upon metolachlor losses in subsurface drainage   总被引:1,自引:0,他引:1  
A field experiment at La Bouzule (Lorraine, France) investigated metolachlor movement to subsurface drains in two soil types, a silt loam and a heavy clay soil, under identical agricultural management practices and climatic conditions. Drainage volumes and concentrations of metolachlor in the soil plough layer and drainwater were monitored after herbicide application from May 1996 to February 1997, and from May to August 1998. Total losses in drainwater were 0.08% and 0.18% of the amount applied to the silt loam compared with 0.59% and 0.41% for the clay soil, in 1996/97 and 1998, respectively. In 1996/97, 32% of total metolachlor loss from the silt loam and 91% from the clay soil occurred during the spring/summer period following treatment. Peak concentrations were 18.5 and 171.6 microg l(-1) for the silt loam and 130.6 and 395.3 microg l(-1) for the clay soil during the spring/summer periods of 1996/97 and 1998, respectively. During the autumn/winter period, concentrations did not exceed 2.2 microg l(-1) for the silt loam and 2.6 microg l(-1) for the clay soil. The experimental results indicate that metolachlor losses in drainwater were primarily caused by preferential flow (macropore flow) which was greater in the clay soil than in the silt loam, and occurring mainly during the spring/summer periods.  相似文献   

20.
Arheimer B  Löwgren M  Pers BC  Rosberg J 《Ambio》2005,34(7):513-520
A hydrological-based model (HBV-NP) was applied to a catchment (1900 km2) in the southern part of Sweden. Careful characterization of the present load situation and the potential for improved treatment or reduced soil leaching were analyzed. Several scenarios were modeled to find strategies to reach the Swedish environmental goals of reducing anthropogenic nitrogen load by 30% and phosphorus load by 20%. It was stated that the goals could be reached by different approaches that would affect different polluters and social sectors. However, no single measure was enough by itself. Instead, a combination of measures was necessary to achieve the goals. The nitrogen goal was the most difficult to attain. In order to be cost-effective, these measures should be applied to areas contributing the most to the net loading of the sea. This strategy could reduce the costs by 70%-80% when compared with implementing the measures in the entire catchment. Integrated catchment models may thus be helpful tools for reducing costs in environmental control programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号