首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Concentrations of nitrogen gases (NH(3), NO(2), NO, HONO and HNO(3)) and particles (pNH(4) and pNO(3)) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO(2)) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH(3)). A combination of gradient method (NH(3) and NO(x)) and resistance modelling techniques (HNO(3), HONO, pNH(4) and pNO(3)) was used to calculate dry deposition of nitrogen compounds. Net flux of NH(3) amounted to -64 ng N m(-2) s(-1) over the measuring period. Net fluxes of NO(x) were upward (8.5 ng N m(-2) s(-1)) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha(-1) yr(-1) and consisted for almost 80% of NH(x). Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (+/-15 kg N ha(-1) yr(-1)) within the canopy.  相似文献   

2.
This study aims to design a dry deposition chamber and to measure ozone depletion over the Taichung field soil. This study seeks to verify the phenomena by an experimental and mathematical model. It is demonstrated that interfacial mass transfer resistances of ozone dry deposition involve reactive resistance (R(sr)) and kinetic resistance (R(sk)). It reveals the chemical reaction (O3 + NO --> NO2) to produce the reactive resistance, and verifies that the interfacial mass transfer resistances depend on nitrogen oxide emission and soil temperature. It shows that the interfacial mass transfer resistances are reduced with increasing soil temperature (T(S)). The model profiles are smaller than the observed data within a relative error of 15%. The reactive resistance decreases exponentially with increasing soil temperature; R(sr)(-1) (cm x sec(-1)) = 0.0001 exp (0.1455T(S)). The kinetic resistance decreases linearly with increasing soil temperature; R(sk)(-1)(cm x sec(-1)) = 0.0108T(S) + 1.4012. This model is more accurate with higher soil temperature and larger ozone concentration. Results are consistent with thermodynamics and reaction kinetics. Ozone dry deposition over agricultural soil causes conversion of nitrogen oxide (NO) to nitrogen dioxide (NO2).  相似文献   

3.
Qian Y  Zheng M  Liu W  Ma X  Zhang B 《Chemosphere》2005,60(7):951-958
Chlorophenols (ClPhs) are considered as important precursors for PCDD/Fs formation. The influences of series of metal oxides including MgO, Al2O3, CaO, BaO, TiO2, V2O5, MnO2, Fe2O3, Co3O4, CuO, Ag2O, ZnO, HgO, SnO, PbO, La2O3, CeO2, and Eu2O3 on PCDD/Fs formation from pentachlorophenol (PCP) were investigated in a laboratory-scale reactor. The results indicated that most of the above metal oxides have obvious suppressing effects on the total amount of PCDD/Fs formation from precursor PCP except for CuO, ZnO, MnO2, TiO2 and Co3O4 with promotion effects at 280 degrees C for 2 h. Although MgO, Al2O3, Fe2O3, PbO, La2O3 and Eu2O3 could reduce the amount of octachlorinated dibenzo-p-dioxin (OCDD), they promote the formation of more toxic 1,2,3,4,6,7,8-HpCDD at the same time. The total suppressing efficiencies of several metal oxides including CaO, BaO, PbO, Ag2O, HgO and SnO which have lower Z/r (charge to radius ratio) <2 are all over 90%. The theories of generalized acid-base and atomic parameter (Z/r) were used to speculate the effecting mechanisms. The factors including time and temperature on suppressing efficiencies of CaO, BaO and PbO have also been studied in the present paper. The results showed that the total suppressing efficiencies of CaO, BaO and PbO increase with the increase of heated time and temperature.  相似文献   

4.
Decomposition of hexamethylcyclotrisiloxane over solid oxides   总被引:1,自引:0,他引:1  
Finocchio E  Garuti G  Baldi M  Busca G 《Chemosphere》2008,72(11):1659-1663
The decomposition of hexamethylcyclotrisiloxane (HMCTS) has been studied at room temperature and in the range 473-673 K over the surface of basic (CaO, MgO) and acidic oxides (Al(2)O(3), SiO(2)). Alumina allows the complete removal of HMCTS from synthetic biogases at 673 K. A reactive adsorption occurs with surface silication and release of methane. The adsorption capacity of our alumina adsorbent (180 m(2) g(-1)), until saturation, at 673 K, is 0.31 g((HMCTS))g((Al2O3))(-1), which corresponds to one silicon atom per 9 A(2), i.e. the silication monolayer capacity. On the contrary, silica, which is an excellent adsorbent for siloxanes at room temperature, looses its adsorption ability at high temperature as it is typical of a molecular adsorption behavior. Basic oxides such as MgO and CaO have strong reactivity in decomposing siloxanes in the absence of CO(2), but loose reactivity when in contact with carbon dioxide because of surface carbonation.  相似文献   

5.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

6.
The absolute accuracy and long-term precision of atmospheric measurements hinge on the quality of the instrumentation and calibration standards. To assess the consistency of the ozone (O3) and nitrogen oxides (NO(x)) standards maintained at the National Institute of Standards and Technology (NIST), these standards were compared through the gas-phase titration of O3 with nitric oxide (NO). NO and O3 were monitored using chemiluminescence and UV absorption, respectively. Nitrogen dioxide (NO2) was monitored directly by laser-induced fluorescence and indirectly by catalytic conversion to NO, followed by chemiluminescence. The observed equivalent loss of both NO and O3 and the formation of NO2 in these experiments was within 1% on average over the range of 40-200 nmol mol(-1) of NO in excess O3, indicating that these instruments, when calibrated with the NIST O3 and NO standards and the NO2 permeation calibration system, are consistent to within 1% at tropospherically relevant mixing ratios of O3. Experiments conducted at higher initial NO mixing ratios or in excess NO are not in as good agreement. The largest discrepancies are associated with the chemiluminescence measurements. These results indicate the presence of systematic biases under these specific conditions. Prospects for improving these experiments are discussed.  相似文献   

7.
Foliar phenol concentrations (total and simple phenols) were determined in Aleppo pine (Pinus halepensis Mill.) needles collected in June 2000, from 6 sites affected by various forms of atmospheric pollutants (NO, NO(2), NO(x), O(3) and SO(2)) monitored during two months. Results show an increase in total phenol content with exposure to sulphur dioxide and a reduction with exposure to nitrogen oxide pollution. p-Coumaric acid, syringic acid and 4-hydroxybenzoic acid concentrations increase with exposure to nitrogen oxide pollution, whereas gallic acid and vanillin decrease in the presence respectively of sulphur dioxide and ozone. This in situ work confirms the major interest of using total and simple phenolic compounds of P. halepensis as biological indicators of air quality.  相似文献   

8.
An interesting aspect of the chemistry of nitrite is the possibility for this compound to interact with other environmental factors and many oxidising species, which results in the oxidation of nitrite to nitrogen dioxide. This is a potentially interesting process that can lead to the formation of nitroaromatic compounds in the environment. In previous papers we have shown that nitrite can interact with dissolved Fe(III) and nitrate under irradiation, Fenton and heterogeneous photo-Fenton reagents, and semiconductor oxides such as TiO2, alpha-Fe2O3, and beta-FeOOH under irradiation. This paper reports on the interaction between nitrite/nitrous acid and the Mn(III,IV) (hydr)oxides beta-MnO2 and gamma-MnOOH, both in neutral solution under irradiation and in acidic conditions in the dark. beta-MnO2 and gamma-MnOOH originate from the oxidation of Mn(II) and play a key role in the redox cycling of manganese in the environment. These Mn(III,IV) (hydr)oxides show some photocatalytic activity, and they can act as thermal oxidants at acidic pH. The photoinduced oxidation of nitrite and the thermal oxidation of nitrous acid by Mn(III,IV) (hydr)oxides yield nitrogen dioxide and lead to the formation of nitrophenols in the presence of phenol. These processes can take place at the water-sediment or water-colloid interface in natural waters and on the surface of atmospheric particulate. Furthermore, the phenol/gamma-MnOOH/HNO2 system in dark acidic solution is an interesting model due to the formation of phenoxyl radical upon phenol monoelectronic oxidation by gamma-MnOOH. The kinetics of nitrophenol generation under such conditions indicates that phenol nitration is unlikely to take place upon reaction between phenoxyl and *NO2 and suggests a solution to a literature debate on the subject.  相似文献   

9.
Alfalfa (Medicago sativa) nutritive quality response to ambient ozone (O(3)), sulfur dioxide (SO(2)) and oxides of nitrogen (NO(x)) were assessed at three locations in west-central Alberta, Canada (1998-2002). Yield data were segregated into high and low relative to overall median yield. Ozone concentrations (hourly median and 95th-percentile) and precipitation (P) contributed 69 and 29%, respectively, to the variability in crude protein (CP) concentration in low-yielding alfalfa, whereas mean temperature (T) and relative humidity (RH) collectively influenced 98% of the variation in CP in high-yielding alfalfa. Three-fourths of the accounted variation in relative feed value (RFV) of low-yielding alfalfa was attributable to P, T and RH, whereas median and 95th-percentile hourly O(3) concentrations and SO(2) and NO(x) exposure integrals contributed 25%. In contrast, air quality, (mainly O(3)) influenced 86% of the accounted variation in RFV of high-yielding alfalfa, and T and P collectively contributed 14%.  相似文献   

10.
Goo JH  Irfan MF  Kim SD  Hong SC 《Chemosphere》2007,67(4):718-723
The selective catalytic reduction (SCR) characteristics of NO and NO(2) over V(2)O(5)-WO(3)-MnO(2)/TiO(2) catalyst using ammonia as a reducing agent have been determined in a fixed-bed reactor at 200-400 degrees C. The presence of NO(2) enhances the SCR activity at lower temperatures and the optimum ratio of NO(2)/NO(x) is found to be 0.5. During the SCR reactions, there are some side reactions occurred such as ammonia oxidation and N(2)O formation. At higher temperatures, the selective catalytic oxidation of ammonia and the nitrous oxide formation compete with the SCR reactions. The denitrification (DeNO(x)) conversion decreases at lower temperatures but it increases at higher temperatures with increasing SO(2) concentration. The presence of SO(2) in the feeds inhibits N(2)O formation.  相似文献   

11.
研究以纳米TiO2为载体,浸渍负载过渡金属氧化物,以CO为还原剂的脱硝催化剂的脱硝性能。实验中以计算量的Ni(NO3)2和Fe(NO3)3混合溶液浸渍纳米TiO2粉末,室温下搅拌30 min至混合均匀,放入旋转蒸发器中,70℃下至水分蒸干为止;所得粉末在550℃下、空气气氛中焙烧4 h即得所需催化剂。用以上方法分别制备2%Fe2O3-10%Cr2O3/TiO2、4%Fe2O3-8%Cr2O3/TiO2、6%Fe2O3-6%Cr2O3/TiO2、8%Fe2O3-4%Cr2O3/TiO2与10%Fe2O3-2%Cr2O3/TiO2等5种催化剂样品。实验结果表明,制备的催化剂具有较好的结构,分散较为均匀。对于CO+NO反应,Fe2O3-Cr2O3/TiO2系列催化剂具有较好的催化活性,NO的转化率都达到了100%。其中,10%Fe2O3-2%Cr2O3/TiO2样品具有最好的低温活性,H2-TPR结果表明,这是由于10%Fe2O3-2%Cr2O3/TiO2催化剂更易于被CO预还原。  相似文献   

12.
A mathematical dry deposition model was developed and an experiment performed to verify that the interfacial transfer velocity (V(S)) of ozone dry deposition includes the interfacial reactive velocity (V(Sr)) and interfacial kinetic velocity (V(Sk)), as determined by measuring the ozone depletion over agricultural field soils in a dry deposition chamber. Experimental results indicate that the chemical reaction (O3 + NO --> NO2 + O2) produces the reactive velocity. Observed interfacial transfer velocities depend on nitrogen oxide emission (NO) and soil temperature (T(S)). Additionally, observed kinetic velocities of conditioned field soils increased linearly with soil temperature. Moreover, observed reactive velocities of field soils increased exponentially with soil temperature, and depend on the emission rate of nitrogen oxide. Results in this study demonstrate that interfacial transfer velocities are variable velocities for long-term transportation, that influenced factors are chemical kinetics, thermodynamics and biochemical mechanisms.  相似文献   

13.
Ambient concentrations of ozone (O3), nitrogen oxides (NOx), total reactive nitrogen (NOy), nitric acid (HNO3), and hydrogen peroxide (H2O2) were measured during September 2003 at an urban site of Cincinnati, OH. The aim of this study was two-fold: to investigate whether O3 formation in this population exposure-type site is NOx, sensitive or volatile organic compound (VOC) sensitive and to test the practicality of using two combined observational-based methods to identify the sensitivity of O3 formation in midlevel polluted locations. The evaluation of the indicator species: NOy, O3/NOy, O3/HNO3, H2O2/ HNO3, and O3/(estimated NOx reaction products), as well as the combined hypothesis testing analysis of the weekend/weekday (WE/WD) differences of 1-hr and 8-hr average maximum O3 and of the 6:00 a.m.-9:00 a.m. average nitric oxide and NOx concentrations, show evidence that Cincinnati is likely VOC sensitive. Average WE 1-hr and 8-hr maximum O3, as well as duration of WE O3 accumulation, were not lower than the corresponding WD levels in spite of the observed significant reduction in NO, emissions on WE, a typical situation in VOC-sensitive locations. The possibility that the seasonal transition from summer to autumn could have influenced the results was also investigated through an exploratory analysis of the afternoon O3 maximum/NOx measured and of the WE/WD differences of peak O3 and morning average NO and NO, concentrations observed at this site from June through September 2003. The results suggest that a VOC-sensitive chemistry regime dominated along the summer season. The findings of this study suggest that additional reductions in regional NO, emissions in Cincinnati, a potential nonattainment area under the 8-hr O3 standard, may cause an increase in local O3. Future strategies to reduce O3 in Southwest Ohio should be further evaluated carefully. The combination of observational-based methods might provide a consistent complementary approach in the identification of the NO,-VOC sensitive characteristics of mid-to-moderate polluted urban areas.  相似文献   

14.
以光催化降解苯酚为探针反应,通过正交实验,系统研究了胶液配比、涂覆次数和焙烧温度等条件对以溶胶-凝胶法分别在普通钠钙玻璃和磨砂玻璃上制备TiO2光催化性能的影响,并利用环境扫描电镜(ESEM)对TiO2催化膜形貌进行了分析。研究表明,在普通钠钙玻璃片上负载TiO2催化膜的影响因素主次顺序为:硝酸体积〉涂覆次数〉焙烧温度〉V乙醇∶V酞酸丁酯,在选定实验条件下的最优条件为:涂覆次数为4次;焙烧温度=450℃;V乙醇∶V酞酸丁酯∶V硝酸(1∶4):V水=400∶40∶1∶4。在磨砂玻璃片上负载TiO2催化膜的的影响因素主次顺序为:涂覆次数〉硝酸体积〉焙烧温度〉V乙醇:V酞酸丁酯,在选定实验条件下的最优条件为:涂覆次数为4次;焙烧温度=500℃;V乙醇∶V酞酸丁酯∶V硝酸(1∶4)∶V水=400∶40∶2∶4。通过扫描电镜可以观察到在普通钠钙玻璃片和磨砂玻璃片表面均附着一层白色的TiO2薄膜,颗粒粒径在100 nm左右。磨砂玻璃比普通钠钙玻璃负载更多的催化剂,磨砂玻璃基TiO2活性更高。磨砂玻璃是一种非常有前景的TiO2催化剂载体材料。  相似文献   

15.
Ambient air quality data were analyzed to empirically evaluate the effects of reductions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx) emissions on weekday and weekend levels of ozone (O3; 1991-1998) and particulate NO3- (1980-1999) in southern California. Despite significantly lower O3 precursor levels on weekends, 20 of 28 South Coast Air Basin (SoCAB) sites (28 of all 78 southern California sites) showed statistically significant higher mean O3 levels on Sundays than on weekdays (p < 0.01); 49 of the remaining 50 sites showed no significant differences between mean weekday and Sunday peak O3 levels. We also observed no statistically significant differences between mean weekday and weekend concentrations of particulate NO3- or nitric acid (HNO3, the precursor of particulate NO3-). Averaged over sites, the mean Sunday NOx and nonmethane hydrocarbon concentrations were 25-41% and 16-30% lower, respectively, than on weekdays. Site-to-site differences between weekend and weekday mean peak hourly O3 levels were related to whether O3 formation was limited by the availability of NOx. A thermodynamic equilibrium model predicts that particulate NO3- levels would decrease in response to a reduction of HNO3, and that particulate ammonium NO3- formation was not limited by the availability of ammonia. The similarity of mean weekday and weekend levels of NO3- therefore did not result from limitations on the formation of particulate NO3- from its precursor, HNO3.  相似文献   

16.
Twenty one of 118 irrigation water wells in the shallow (25-30 m thick) Mississippi River Valley alluvial aquifer in the Bayou Bartholomew watershed, southeastern Arkansas had arsenic (As) concentrations (<0.5 to 77 microg/L) exceeding 10 microg/L. Sediment and groundwater samples were collected and analyzed from the sites of the highest, median, and lowest concentrations of As in groundwater in the alluvial aquifers located at Jefferson County, Arkansas. A traditional five-step sequential extraction was performed to differentiate the exchangeable, carbonate, amorphous Fe and Mn oxide, organic, and hot HNO(3)-leachable fraction of As and other compounds in sediments. The Chao reagent (0.25 M hydroxylamine hydrochloride in 0.25 M HCl) removes amorphous Fe and Mn oxides and oxyhydroxides (present as coatings on grains and amorphous minerals) by reductive dissolution and is a measure of reducible Fe and Mn in sediments. The hot HNO(3) extraction removes mostly crystalline metal oxides and all other labile forms of As. Significant total As (20%) is complexed with amorphous Fe and Mn oxides in sediments. Arsenic abundance is not significant in carbonates or organic matter. Significant (40-70 microg/kg) exchangeable As is only present at shallow depth (0-1 m below ground surface). Arsenic is positively correlated to Fe extracted by Chao reagent (r=0.83) and hot HNO(3) (r=0.85). Arsenic extracted by Chao reagent decreases significantly with depth as compared to As extracted by hot HNO(3). Fe (II)/Fe (the ratio of Fe concentration in the extracts of Chao reagent and hot HNO(3)) is positively correlated (r=0.76) to As extracted from Chao reagent. Although Fe (II)/Fe increases with depth, the relative abundance of reducible Fe decreases noticeably with depth. The amount of reducible Fe, as well as As complexed to amorphous Fe and Mn oxides and oxyhydroxides decreases with depth. Possible explanations for the decrease in reducible Fe and its complexed As with depth include historic flushing of As and Fe from hydrous ferric oxides (HFO) by microbially-mediated reductive dissolution and aging of HFO to crystalline phases. Hydrogeochemical data suggests that the groundwater in the area falls in the mildly reducing (suboxic) to relatively highly reducing (anoxic) zone, and points to reductive dissolution of HFO as the dominant As release mechanism. Spatial variability of gypsum solubility and simultaneous SO(4)(2-) reduction with co-precipitation of As and sulfide is an important limiting process controlling the concentration of As in groundwater in the area.  相似文献   

17.
The effects of wet-deposited nitrogen on soil acidification and the health of Norway spruce were investigated in a pot experiment using an open-air spray/drip system. Nitrogen was applied as ammonium ((NH(4))(2)SO(4)) or nitrate (HNO(3)/NaNO(3)) in simulated rain to either the soil or the foliage. Symptoms of forest decline as observed in the field were not reproduced, and there was no evidence of direct toxicity. Treatments did, however, have significant effects on tree nutrition. Both NH(+)(4) and NO(-)(3) treatment applied to the foliage lowered foliar K concentrations. NH(+)(4) to a greater extent. Soil-applied NH(+)(4) reduced foliar Mg concentrations and increased foliar Al and Fe. Soil-applied NO(-)(3) significantly reduced foliar P concentrations, and at high doses prevented the alleviation of P deficiency by fertiliser. These effects could be important in some field situations. Ammonium deposition is predicted to be more damaging than nitrate deposition, although the latter may be critical for forests where P status is marginal, such as in parts of the British uplands.  相似文献   

18.
Since the mid-1970s, ozone (O3) levels in portions of California's South Coast Air Basin (SoCAB) on weekends have been as high as or higher than levels on weekdays, even though emissions of O3 precursors are lower on weekends. Analysis of the ambient data indicates that the intensity and spatial extent of the weekend O3 effect are correlated with-day-of-week variations in the extent of O3 inhibition caused by titration with nitric oxide (NO), reaction of hydroxyl radical (OH) with nitrogen dioxide (NO2), and rates of O3 accumulation. Lower NO mixing ratios and higher NO2/oxides of nitrogen (NOx) ratios on weekend mornings allow O3 to begin accumulating approximately an hour earlier on weekends. The weekday/weekend differences in the duration of O3 accumulation remained relatively constant from 1981 to 2000. In contrast, the rate of O3 accumulation decreased by one-third to one-half over the same period; the largest reductions occurred in the central basin on weekdays. Trends in mixing ratios of O3 precursors show a transition to lower volatile organic compound (VOC)/NOx ratios caused by greater reductions in VOC emissions. Reductions in VOC/NOx ratios were greater on weekdays, resulting in higher VOC/NOx ratios on weekends relative to weekdays. Trends in VOC/NOx ratios parallel the downward trend in peak O3 levels, a shift in the location of peak O3 from the central to the eastern portion of the basin, and an increase in the magnitude and spatial extent of the weekend O3 effect.  相似文献   

19.
Light-induced disappearance of nitrite in the presence of iron (III)   总被引:1,自引:0,他引:1  
Zhang H  Bartlett RJ 《Chemosphere》2000,40(4):411-418
Understanding of rapid disappearance of nitrite in natural waters and its impact on nitrogen natural cycling has remained limited. We found that NO2- disappeared rapidly in pH 3.2 aqueous Fe(III) solutions both in sunlight and in 356 nm light. Quantum yields of the NO2- loss at 356 nm were 0.049-0.14 for initial levels of 10-80 microns NO2- and 200 microns Fe(III). The NO2- loss (at 356 nm) followed apparent first-order kinetics. The rate constants were 1.3 x 10(-3) (40 microns NO2-) and 4.1 x 10(-4) s-1 (80 microns NO2-) for 100 microns Fe(III), and 2.3 x 10(-3) (40 microns NO2-) and 7.5 x 10(-4) s-1 (80 microns NO2(-1)) for 200 microns Fe(III) (t1/2 = 8.7, 27.9, 5.1, and 15.3 min, respectively). The rate constants were directly proportional to [Fe(III)]0 and inversely proportional to [NO2-]0. Agreement between the rate constants obtained experimentally and those calculated mechanistically supports the hypothesis that NO2- was oxidized to NO2 by .OH radicals from photolysis of FeOH2+ complexes, and at high [NO2-]0 (e.g., 80 microns) relative to [Fe(III)]0, hydrolysis of NO2 or N2O4 to form NO3- and NO2- could be significant. This study showed that light and Fe(III)-induced oxidation of NO2- (rate = approximately 10(-1)-10(-2) microns s-1) was more rapid than its direct photolysis (rate = approximately 10(-4) microns s-1), and the photolysis could be a significant source of .OH radicals only in cases where the Fe(III) level is much lower than the NO2- level ([Fe(III)]/[NO2-] < 1/80). This study suggests that the light and Fe(III)-induced oxidation of NO2- would be one potential important pathway responsible for the rapid transformation of NO2- in acidic surface waters, especially those affected by acid-mine drainage or volcanic activities. This study also may be of interest for modeling certain acidic atmospheric water environments.  相似文献   

20.
Fe(3+)-, Cr(3+)-, Cu(2+)-, Mn(2+)-, Co(2+)-, and Ni(2+)-exchanged Al2O3-pillared interlayer clay (PILC) or TiO2-PILC catalysts are investigated for the selective catalytic reduction (SCR) of nitric oxide by ammonia in the presence of excess oxygen. Fe(3+)-exchanged pillared clay is found to be the most active. The catalytic activity of Fe-TiO2-PILC could be further improved by the addition of a small amount of cerium ions or cerium oxide. H2O and SO2 increase both the activity and the product selectivity to N2. The maximum activity on the Ce-Fe-TiO2-PILC is more than 3 times as active as that on a vanadium catalyst. Moreover, compared to the V2O5-WO3/TiO2 catalyst, the Fe-TiO2-PILC catalysts show higher N2/N2O product selectivities and substantially lower activities (by approximately 85%) for SO2 oxidation to SO3 under the same reaction conditions. A 100-hr run in the presence of H2O and SO2 for the CeO2/Fe-TiO2-PILC catalyst showed no decrease in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号