首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
采用正交实验 ,研究了水合制备高效钙基烟气脱硫剂时各制备条件对产物的影响。结果表明 ,水合时间、水合温度Ca(OH) 2 /CaSO4的质量比 ,以及飞灰 / (Ca(OH) 2 +CaSO4)质量比四个条件对脱硫剂比表面积的形成有显著的影响 ;从而由单因素实验得出一最佳钙基脱硫剂制备条件组合。此外 ,通过XDR分析 ,测定了脱硫剂的物相组成 ,扫描电镜观察显示飞灰和水合吸收剂具有不同的表面形态  相似文献   

2.
钙基烟气脱硫剂制备的实验研究   总被引:10,自引:1,他引:9  
采用正交试验,研究了水合制备高效钙基烟气脱硫剂时各制备条件对产物的影响。结果表明,水合时间、水合温度Ca(OH)2/CaSO4的质量比,以及飞灰/(Ca(OH)2 CaSO4)质量比四个条件对脱硫剂比表面积的形成有显著的影响;从而由单因素实验得出一最佳钙基脱硫剂制备条件组合。此外,通过XDR分析,测定了脱硫剂的物相组成,扫描电镜观察显示飞灰和水合吸收剂具有不同的表面形态。  相似文献   

3.
在研究氢氧化镁混凝特性的基础上,复配氯化镁和硫酸铝作为混凝剂,以高岭土配水水样为研究对象,运用iPDA在线监测技术对混凝过程絮体形成进行监测,探讨了单独使用氯化镁和硫酸铝以及二者复配使用的混凝效果和絮体特性,确定复配使用的各种条件。结果表明,对于浊度20 NTU,pH 11.5的高岭土配水水样,氯化镁、硫酸铝最佳投加量分别为7.2 mg/L(Mg2+计)和3 mg/L(Al3+计);硫酸铝跟氯化镁复配使用时,先投加硫酸铝,间隔30 s后投加氯化镁,混凝效果较好;在镁离子最佳投加量7.2 mg/L时,铝和镁最佳质量比在1∶3~1∶2之间;镁铝复配时其FI值明显大于单独作用时,即絮体尺寸大小:二者复配硫酸铝氯化镁,而且复配条件下Zeta电位值在零电势左右浮动,浮动范围小,更利于聚集沉淀;镁铝复配时发生了协同效应,弥补了单独使用氯化镁混凝过程的不足。  相似文献   

4.
采用飞灰和水菱镁石水合搅拌制备飞灰/水菱镁石新型复合脱硫剂,模拟湿法烟气脱硫过程,采用正交实验分析法探讨了液固比(质量比)、反应温度、搅拌速度以及鼓泡深度4个因素对脱硫效率的影响。结果发现:复合脱硫剂的比表面积增大,这有利于该复合脱硫剂与气相SO2的接触和反应,因而提高了脱硫效率。复合脱硫剂的最佳反应组合:液固比为15.0∶1.0、反应温度为常温(20℃)、搅拌速度为150r/min、鼓泡深度为2.0cm,该条件下脱硫效率为98.58%。  相似文献   

5.
为了降低蓝藻水处理中消毒副产物的产生,采用物理加压法取代传统化学氧化法进行预处理,从而减少新的化学物质的产生,降低消毒副产物风险,实验对比研究了加压混凝沉淀和预氧化混凝沉淀除藻工艺中消毒副产物及其前驱物的浓度。结果表明,经0.7 MPa加压1 min后混凝沉淀处理,藻类去除率达到95.8%,浊度0.58 NTU,均比原水混凝沉淀和预氧化混凝沉淀后效果大幅度提高。蓝藻水加压后三卤甲烷前驱物降低26.2%,卤乙酸前驱物无变化,混凝沉淀处理后前驱物比原水混凝沉淀后略有减少。加压水过滤消毒后消毒副产物与原水处理后持平。而经1~2 mg/L的Na Cl O预氧化水混凝沉淀过滤消毒后,三卤甲烷和卤乙酸浓度分别比原水处理后增加了3~4倍和1.7~2.5倍。加压混凝沉淀工艺处理蓝藻水,比传统预氧化工艺更有效控制了消毒副产物的产生。  相似文献   

6.
磁混凝在水与废水处理领域的应用   总被引:4,自引:1,他引:3  
磁技术作为一种高效的分离、净化方法在水与废水处理领域的作用和地位日益凸显,磁性接种、磁性吸附等水处理方法已受到了广泛关注;高场强、低能耗的磁分离器的相继问世和不断完善为高效稳定地进行磁分离提供了必要条件。基于上述考虑,将传统的混凝过程与磁技术有机结合而产生的磁混凝工艺将成为混凝发展的新方向之一。本文系统综述了磁混凝在水处理中的研究和应用,从颗粒物在磁场和重力场中的界面过程、相互作用机制,磁混凝在国内外的研究现状,以及磁分离器的研究进展等角度展开讨论,探讨了该技术面临的问题,并展望了其发展前景。  相似文献   

7.
底灰动态吸附焦化和造纸废水研究   总被引:1,自引:0,他引:1  
分析了底灰的化学组成、矿物组成和比表面积等基本理化性质;采用动态吸附柱法研究了底灰处理焦化和造纸废水的性能,探讨了进水流量和吸附柱高度对吸附效果的影响.结果表明,底灰不仅有吸附作用,还具有一定的混凝作用;颗粒态有机碳(POC)较易被混凝除去,焦化废水中POC占总有机碳(TOC)的17%,而造纸废水中POC仅占TOC的2.3%,因此底厌对焦化废水COD的去除效果比造纸废水好;底灰对焦化废水色度的去除率要高于COD;接近吸附饱和时,底灰对造纸废水OM275的去除率仍有约27%,说明造纸废水中苯环类物质相比于其他有机物较易被去除.  相似文献   

8.
根据混凝反应的基本原理,针对低浊度微污染原水的特性,设计了一种新型一体化水力强化混凝净水器.研究了使用该设备及相应混凝药剂处理低浊度、微污染珠江原水的最佳工艺条件.实验结果表明,该净水器在较高的进水流速范围内对低浊度原水有很好的处理效果.在适宜条件下,净水器的出水经过沙滤后浊度<0.12 NTU;在使用CGA和PAC的强化混凝条件下,净水器对原水中所含的有机物也有较好的去除作用.  相似文献   

9.
采用依时间序列进行对比的方法,考察了高锰酸盐复合剂(PPC)对饮用水源的强化除污染效能。生产性实验结果表明,PPC具有优良的强化混凝和强化过滤效能,能显著降低水厂沉后水和滤后水的浊度、CODMn、UV254等水质指标。与未投加时相比较,水厂投加PPC后沉后水和滤后水浊度分别降低了25%和33.3%,沉后水和滤后水CODMn去除率分别提高了15.3%和11.5%,UV254去除率分别提高了16.3%和9.5%。同时,GC/MS分析表明PPC能有效去除水源水中的多种微量有机污染物,显著提高饮用水的化学安全性。PPC通过高锰酸钾的氧化作用,水合二氧化锰的吸附作用,以及各组分间的协同强化作用,显著提高了对水中污染物质的去除效率。  相似文献   

10.
概述了水处理絮体性状(包括絮体粒度、分形维数及表观强度)在线图像检测系统的开发,结合实验室条件下的混凝实验考查了该实时图像检测系统的应用情况.结果表明,利用该图像检测系统获取的数据符合一般混凝实验的结果,且对混凝慢速搅拌时间、原水浊度及混凝剂投加量有不同程度的敏感性.在进一步研究的基础上,该图像检测系统可在水处理混凝过程的自动控制中加以应用.  相似文献   

11.
The applicability of amorphous aluminium oxide as a fluoride retention additive to flue gas desulphurisation (FGD) gypsum was studied as a way of stabilizing this by-product for its disposal in landfills. Using a batch method the sorption behaviour of amorphous aluminium oxide was evaluated at the pH (about 6.5) and background electrolyte conditions (high chloride and sulphate concentrations) found in FGD gypsum leachates. It was found that fluoride sorption on amorphous aluminium oxide was a very fast process with equilibrium attained within the first half an hour of interaction. The sorption process was well described by the Langmuir model, offering a maximum fluoride sorption capacity of 61.7 mg g(-1). Fluoride sorption was unaffected by chloride co-existing ions, while slightly decreased (about 20%) by competing sulphate ions. The use of amorphous aluminium oxide in the stabilization of FGD gypsum proved to greatly decreased its fluoride leachable content (in the range 5-75% for amorphous aluminium oxide doses of 0.1-2%, as determined by the European standard EN 12457-4 [EN-12457-4 Characterization of waste-leaching-compliance test for leaching of granular waste materials and sludges-Part 4: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10mm (without or with size reduction)]), assuring the characterization of this by-product as a waste acceptable at landfills of non-hazardous wastes according to the Council Decision 2003/33/EC [Council Decision 2003/33/EC of 19 December 2002. Establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC] on landfill of wastes. Furthermore, as derived from column leaching studies, the proposed stabilization system proved to be highly effective in simulated conditions of disposal, displaying a fluoride leaching reduction value about 81% for an amorphous aluminium oxide added amount of 2%.  相似文献   

12.
Lai CH  Lo SL  Chiang HL 《Chemosphere》2000,41(8):1249-1255
This study was conducted to develop a heating process for coating hydrated iron oxide on the sand surface to utilise the adsorbent properties of the coating and the filtration properties of the sand. BET and scanning electron microscope (SEM) analyses were used to investigate the surface properties of the coated layer. An energy dispersive X-ray (EDAX) technique of analysis was used for characterising metal adsorption sites on the iron-coated sand surface. The results indicated that the iron-coated sand had more micropores and higher specific surface area because of the attachment of iron oxide. Copper ions could penetrate into the micropores and mesopores of iron oxide on sand surface, and the regeneration of the iron-coated sand could be achieved by soaking with pH = 3.0 acid solution. Besides, the results of EDAX analysis showed that copper ions were chemisorbed on the surface of iron-coated sand. Results of the study developed an innovative technology for coating iron oxide on sand surface for the treatment of heavy metal in water.  相似文献   

13.
采用KMnO4溶液浸渍法制备了新型改性锰砂滤料,研究了滤料表面性能和过滤处理高铁锰矿井水的效果。结果表明,锰砂滤料除铁锰性能优于石英砂、陶粒以及瓷砂,采用KMnO4溶液浸渍能够提高锰砂滤料的过滤性能,最优的浸渍浓度为5%。5%KMnO4改性锰砂滤料过滤处理高铁锰矿井水的最佳工艺参数为:过滤周期24 h,反冲洗强度3.2 L/(s.m2),反冲洗时间5 min;通过比表面积测试分析和SEM表征分析发现,KMnO4溶液浸渍能够提高锰砂滤料比表面积,并在锰砂滤料表面形成了氧化膜,从而提高除铁除锰效果,而且浸渍液浓度越高,这种作用越明显。  相似文献   

14.
Abstract

The batch reaction between fly ash and hydrated lime in water to produce high surface area calcium silicates for flue gas desulfurization has been examined extensively. This paper examines the reaction in a flow reactor using two low-calcium fly ashes and introducing gypsum, calcium sulf ite hemihydrate, and calcium chloride as additives to the reaction. The flow system is compared to the batch reaction at similar operating conditions and a segregated flow model is used to approximate flow reactor behavior.

Experiments with calcium chloride and gypsum additives were modeled fairly well by the segregated flow approximation at residence times less than 12 hours. The flow reactor produced low surface area material at longer residence times when gypsum was present. Because the changing solution chemistry affected the batch reaction rate the fly ash and hydrated lime system without gypsum or calcium chloride could not be approximated using batch reaction data. In this case, the flow reactor produced higher surface area product than the batch reactor for a given residence time due to the increased calcium hydroxide availability.  相似文献   

15.
磁性介孔锰铁复合氧化物对Cr(Ⅵ)的吸附性能研究   总被引:1,自引:0,他引:1  
以复合金属草酸盐为前驱体制备了纳米晶构筑的介孔锰铁氧化物材料,采用透射电镜、X射线衍射仪和固体比表面测定仪等对产物进行了表征.并研究了其对水体Cr(Ⅵ)的吸附性能,考察了pH及离子强度对吸附容量的影响、吸附动力学、吸附等温线以及碱液对Cr(Ⅵ)的洗脱率。结果表明,获得的锰铁氧化物为纳米晶构筑的介孔材料,比表面达277.4 m2/g,对Cr(Ⅵ)在酸性条件下有较强的吸附性能。在初始Cr(Ⅵ)质量浓度为100 mg/L,pH值在2时,10 min内能使溶液中的Cr(Ⅵ)去除率达96.8%,最大Cr(Ⅵ)吸附容量Qm为40 mg/g。  相似文献   

16.
To develop standard toxic gas mixtures, it is essential to identify adsorption characteristics of each toxic gas on the inner surface of a gas cylinder. Thus, this study quantified adsorbed amounts of the four toxic gases (nitric oxide [NO], nitrogen dioxide [NO2], sulfur dioxide [SO2], and hydrogen chloride [HCl]) on the inner surface of aluminum cylinders and nickel-coated manganese steel cylinders. After eluting adsorbed gases on the inside of cylinders with ultrapure water, a quantitative analysis was performed on an ion chromatograph. To evaluate the reaction characteristics of the toxic gases with cylinder materials, quantitative analyses of nickel (Ni), iron (Fe), and aluminum (Al) were also performed by inductively coupled plasma optical emission spectrometry (ICP-OES). It was found that the amounts of NO, NO2, and SO2 adsorbed on the inner surface of aluminum cylinders were less than 1.0% at the level of 100 μmol/mol mixing ratio, whereas the signal for most heavy metal elements were below their respective detection limits. This study found that the amounts of HCl adsorbed on the inner surface of nickel-coated manganese steel cylinders were less than 5% at the level of 100 μmol/mol mixing ratio, whereas Ni (86 μmol) and Fe (28 μmol) were detected in the same cylinders. It was revealed that the adsorption mainly took place via the reaction of HCl with inner surface material of nickel-coated manganese steel cylinders. On the other hand, in the case of aluminum cylinders, the amounts of the adsorption were determined to be less than 1% at the level of HCl 100 μmol/mol mixing ratio, whereas most of Ni, Fe, and Al were detected at levels similar to their limits of detection. As a result, this study found that aluminum cylinders are more suitable for preparing HCl gas mixtures than nickel-coated manganese steel cylinders.

Implications: To develop a standard toxic gas mixture, it is essential to understand the adsorption characteristics of each toxic gas inside a gas cylinder. It was found that the amounts of NO, NO2, and SO2 adsorbed inside aluminum cylinders were less than 1.0% at the level of 100 μmol/mol mixing ratio. The amounts of HCl adsorbed inside nickel-coated manganese steel cylinders were less than 5% at the level of 100 μmol/mol mixing ratio, whereas those inside aluminum cylinders were less than 1%, indicating that aluminum cylinders are more suitable for preparing HCl gas mixtures.  相似文献   


17.
Aspects of the core-shell model of nanoscale zero-valent iron (nZVI) and their environmental implications were examined in this work. The structure and elemental distribution of nZVI were characterized by X-ray energy-dispersive spectroscopy (XEDS) with nanometer-scale spatial resolution in an aberration-corrected scanning transmission electron microscope (STEM). The analysis provides unequivocal evidence of a layered structure of nZVI consisting of a metallic iron core encapsulated by a thin amorphous oxide shell. Three aqueous environmental contaminants, namely Hg(II), Zn(II) and hydrogen sulfide, were studied to probe the reactive properties and the surface chemistry of nZVI. High-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis of the reacted particles indicated that Hg(II) was sequestrated via chemical reduction to elemental mercury. On the other hand, Zn(II) removal was achieved via sorption to the iron oxide shell followed by zinc hydroxide precipitation. Hydrogen sulfide was immobilized on the nZVI surface as disulfide (S(2)(2-)) and monosulfide (S(2-)) species. Their relative abundance in the final products suggests that the retention of hydrogen sulfide occurs via reactions with the oxide shell to form iron sulfide (FeS) and subsequent conversion to iron disulfide (FeS(2)). The results presented herein highlight the multiple reactive pathways permissible with nZVI owing to its two functional constituents. The core-shell structure imparts nZVI with manifold functional properties previously unexamined and grants the material with potentially new applications.  相似文献   

18.
Effect of Al(III) speciation on coagulation of highly turbid water   总被引:2,自引:0,他引:2  
Lin JL  Huang C  Pan JR  Wang D 《Chemosphere》2008,72(2):189-196
In Taiwan, the turbidity of raw water for fresh water treatments can sometimes reach as high as 40 000 NTU due to intensive rainfall, especially in typhoon seasons. In response, water works often apply large quantities of coagulants such as polyaluminium chloride (PACl). In this study, simulated and natural highly turbid water was coagulated with two PACls, a commercial product (PACl-1) and a laboratory product (PACl-E). The Al species distributions of PACl-1 and PACl-E under various pH conditions were determined, and the corresponding coagulation efficiency was evaluated. The PACl-E has a wider range of operational pH, while the efficiency of PACl-1 peaks at around neutral pH. For simulated water up to 5000 NTU, the PACl-E was superior to PACl-1 at low dosage and in the pH range studied. Similar results were discovered with natural water, except that when the turbidity was extremely high, the coagulation efficiency of PACl-E decreased significantly due to the presence of large amounts of organic matter. The coagulation of PACl-E was closely related to the content of polycationic aluminium (Al13) while that of PACl-1 was dictated by the amount of Alc. The sludge from PACl-E coagulation had better dewaterability when the optimum dosage was applied. The experimental results suggest that for natural water up to 5000 NTU, PACl containing high Al13 species is recommended for coagulation. In cases when the water contains high organic matter, efficient coagulation depends upon enmeshment by amorphous aluminium hydroxide.  相似文献   

19.
Recently, nano zero-valent iron (nZVI) has emerged as an effective adsorbent for the removal of arsenic from aqueous solutions. However, its use in various applications has suffered from reactivity loss resulting in a decreased efficiency. Thus, the aim of this study was to develop an effective arsenic adsorbent as a core/shell structural nZVI/manganese oxide (or nZVI/Mn oxide) to minimize the reactivity loss of the nZVI. As the major result, the arsenic adsorption capacities of the nZVI/Mn oxide for As(V) and As(III) were approximately two and three times higher than that of the nZVI, respectively. In addition, the As(V) removal efficiency of the nZVI/Mn oxide was maintained through 4 cycles of regeneration whereas that of the nZVI was decreased significantly. The enhanced reactivity and reusability of the nZVI/Mn oxide can be successfully explained by the synergistic interaction of the nZVI core and manganese oxide shell, in which the manganese oxides participate in oxidation reactions with corroded Fe2+ and subsequently retard the release of aqueous iron providing additional surface sites for arsenic adsorption. In summary, this study reports the successful fabrication of a core/shell nZVI/Mn oxide as an effective adsorbent for the removal of arsenic from aqueous solutions.  相似文献   

20.
Creosote-contaminated soil samples from the Libby Ground Water Contamination Superfund Site in Libby, MT, were amended with the potential alternate electron acceptors (AEA) nitrate (KNO3), manganese oxide (MnO2), and amorphous iron oxyhydroxide (FeOOH) and incubated at low oxygen tensions (0-6% O2). The fate of 14C-pyrene was evaluated with respect to the different soil amendments. The fate of 14C from the radiolabeled pyrene with regard to mineralization and bound residue formation within soil humic fractions was not significantly different from controls for the iron and manganese amended soils. Nitrate amendments appeared to stimulate 14C-pyrene mineralization at a level of 170 mg NO3-N kg(-1), and inhibit mineralization at 340 mg NO3-N kg(-1). The stimulatory effect did not appear to be the result of nitrate serving as an electron acceptor. Although AEA amendments did not significantly affect the rate or extent of 14C-pyrene mineralization, results of oxygen-deprived incubations (purged with N2) indicate that AEA may be utilized by the microbial community in the unsaturated contaminated soil system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号