首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
硫化氢废气治理研究进展   总被引:22,自引:0,他引:22  
综合评述了硫化氢废气的各类净化方法及最新的研究进展。硫化氢废气的净化有吸收法、吸附法、氧化法、分解法和生物法。本文对超级克劳斯法和分解法研究进行了重点阐述。  相似文献   

2.
光照对低浓度硫化氢气体生物法净化的影响   总被引:3,自引:1,他引:2  
和种进行光照和避光的对比试验表明,光照能提高微生物对硫化氢废气的净化效率,最终产物为硫酸,净化效率和液相硫酸极的浓度随光照强度的增加而增加。避光时微生物对硫化氢废气的净化效率较低,但最终产物为单质硫。根据上述结果适宜的工艺流程应是首先将硫化氢废气通入避光的生物膜填料塔,把硫化氢转化为能回收的单质硫,然后再将废气通入光照的生物膜填料塔净化,进一步降低硫化氢废气的排放浓度。  相似文献   

3.
挥发性有机废气净化技术研究进展   总被引:14,自引:0,他引:14  
综述了微波催化氧化、膜基吸收净化、生物过滤净化和纳米材料净化对废气中的挥发性有机化合物的研究进展及应用。  相似文献   

4.
挥发性有机废气净化技术研究进展   总被引:4,自引:0,他引:4  
综述了微波催化氧化、膜基吸收净化、生物过滤净化和纳米材料净化对废气中的挥发性有机化合物的研究进展及应用  相似文献   

5.
生物法净化低浓度工业废气的技术进展   总被引:6,自引:0,他引:6  
综述了生物法净化有害气体的发展历史与现状,介绍了有机废气、SO2、H2S、NOx废气处理的生物净化实验研究和工业应用情况。  相似文献   

6.
通过酸碱改性制备了酸式和碱式2种不同表面性质的常温氧化铁脱硫剂,并采用FT-IR技术对其表面酸碱性质和净化硫化氢废气活性进行了研究.结果表明,表面酸碱件质不同的脱硫剂其脱硫反应行为也不同,在脱硫过程中硫化氢氧化生成的硫酸及亚硫酸会影响脱硫剂的表面酸碱性质,造成酸式脱硫剂的表面酸性更强,从而抑制了硫化氢分子在酸式脱硫剂表...  相似文献   

7.
生物化学法净化低浓度甲苯废气的传质研究   总被引:3,自引:0,他引:3  
通过试验和理论分析,研究生物化学法净化低浓度甲苯废气这一传质一生化反应过程的控制因素,结果表明生物化学法净化低学本废气为传播控制过程,并以气膜控制为主,研究为工业化装置的设计和操作提供了理论依据。  相似文献   

8.
硫化氢硫醇废气的臭氧氧化试验   总被引:6,自引:0,他引:6  
介绍了臭氧氧化法去除工业废气中的硫化氢、硫醇的试验情况,考察了臭氧浓度、停留时间和催化作用等不同因素对去除率的影响.试验结果表明能达到较好的去除效果,硫化氢、硫醇的最终氧化产物不是二氧化硫,不会增加二氧化硫的污染.  相似文献   

9.
生物法净化再生胶生产废气工业试验研究   总被引:5,自引:0,他引:5  
在再生橡胶厂进行橡胶再生低浓度有机废气的生物法净化工业试验研究,对于甲苯浓度为300~1400mg/m^3的再生胶脱硫废气,在常温常压下以气体流量10~20m^3/h、循环液体喷淋量300~500L/h运行生物法废气净化装置获得了良好物净化效果。该装置连续运行100d的结果显示,其对再生胶废气中甲苯的净化效率可较长时间的保持在90%左右,废气经处理后可以实现达标排放,废气处理成本约为工厂再生胶产值的0.12%~0.14%,具有明显的技术先进性和经济合理性。  相似文献   

10.
粘胶纤维生产的废气含有二硫化碳和硫化氢 ,均为对人体有害、污染环境的气体。本文介绍了目前治理粘胶纤维生产废气的工艺方法。  相似文献   

11.
采用臭氧曝气法、粉末活性炭吸附法、颗粒活性炭过滤法、臭氧曝气-粉末活性炭吸附联用法、空气曝气-粉末活性炭吸附联用法对沼液中的氨气、硫化氢、吲哚、挥发酚类等主要致嗅物质的去除情况进行了研究,同时分析了不同方法对沼液中营养物质TN、DN、TP、DP等的影响。结果表明,采用粉末活性炭吸附法处理沼液,臭味物质的去除情况以及营养物质的保留效果最好,当粉末活性炭投加量为15 000 mg/L时,沼液中的硫化氢、吲哚、挥发酚已经完全去除,氨氮、氨气的去除率分别为11.42%、13.98%;DN、DP含量分别减少了10.46%、19.53%,但是TN、TP含量分别增加了6.26%、9.63%。  相似文献   

12.
硫化氢吸收净化技术研究进展   总被引:3,自引:1,他引:3  
综合评述了硫化氢气体的吸收净化方法及特点。净化方法分为干法和湿法两大类。大部分干法脱硫剂均不能再生 ,硫容量相对较低 ,主要适于气体精细脱硫。吸收净化工艺能适应较高负荷的脱硫要求 ,应用面广 ,其中尤以吸收氧化法较突出。指出吸收氧化法中的铁基工艺尽管在工艺控制方面还有一定难度 ,但仍可作为一种有较大发展前途的方法。  相似文献   

13.
Wang C  Pei Y 《Chemosphere》2012,88(10):1178-1183
This work investigated the characteristics and mechanisms of hydrogen sulfide adsorption by ferric and alum water treatment residuals (FARs) in solution. The results indicated that FARs had a high hydrogen sulfide adsorption capacity. pH 7 rather than higher pH (e.g. pH 8-10) was favorable for hydrogen sulfide removal. The Yan model fitted the breakthrough curves better than the Thomas model under varied pH values and concentrations. The Brunauer-Emmett-Teller surface area and the total pore volume of the FARs decreased after the adsorption of hydrogen sulfide. In particular, the volume of pores with a radius of 3-5 nm decreased, while the volume of pores with a radius of 2 nm increased. Therefore, it was inferred that new adsorption sites were generated during the adsorption process. The pH of the FARs increased greatly after adsorption. Moreover, differential scanning calorimetry analysis indicated that elemental sulfur was present in the FARs, while the derivative thermal gravimetry curves indicated the presence of sulfuric acid and sulfurous acid. These results indicated that both oxidization and ligand exchange contribute to the removal of hydrogen sulfide by FARs. Under anaerobic conditions, the maximum amount of hydrogen sulfide released was approximately 0.026 mg g(-1), which was less than 0.19% of the total amount adsorbed by the FARs. The hydrogen sulfide that was released may be re-adsorbed by the FARs and transformed into more stable mineral forms. Therefore, FARs are an excellent adsorbent for hydrogen sulfide.  相似文献   

14.
The absorption of hydrogen sulfide and methyl mercaptan by aqueous solutions of chlorine, sodium hydroxide, and chlorine plus sodium hydroxide was studied using a two-inch diameter absorption column packed with ¼ inch Intalox saddles. Absorption rates were noticeably affected by chemical reactions occurring in the aqueous chlorine and hydroxide media. These solutions were studied as a means of controlling sulfur-containing gas emissions from kraft paper mills. The absorption studies indicated that aqueous chlorine solutions at a pH above 12 were effective absorbents for hydrogen sulfide removal in absorption equipment designed to tolerate sulfur in suspension. The absorption of methyl mercaptan in aqueous chlorine solutions appeared to be impractical since dimethyl disulfide was apparently the only product formed and was stripped from the tower by the gas stream. Sodium hydroxide solution was an effective absorbent for both methyl mercaptan and hydrogen sulfide when hydroxide to sulfide or mercaptan feed ratios were greater than 1 or 1.8, respectively. The mercaptan absorption coefficient was approximately twice that for sulfide absorption.  相似文献   

15.
介质阻挡放电净化硫化氢气体的实验研究   总被引:2,自引:1,他引:1  
采用介质阻挡放电等离子体技术净化恶臭气体硫化氢。考察了电压、频率、硫化氢初始浓度以及停留时间对硫化氢净化效果的影响。结果表明,介质阻挡放电可以有效消除硫化氢污染,硫化氢净化率随电压、频率以及停留时间的增加而升高,随硫化氢初始浓度增加而下降。当电压≥19kV,频率为300Hz,停留时间为1.56s,硫化氢初始质量浓度为30.1mg/m3时,硫化氢净化率接近100%。  相似文献   

16.
Kinetics and stoichiometry of aerobic chemical and biological sulfide oxidation in wastewater from sewer networks were studied. In this respect, the effects of temperature and pH were investigated in the ranges 10 to 20 degrees C and 5 to 9, respectively. The temperature dependency of sulfide oxidation kinetics was described using an Arrhenius relationship. The effect of pH on the rate of chemical sulfide oxidation is related to the dissociation of hydrogen sulfide (H2S) to hydrogen sulfide ion (HS(-)), with HS(-) being more readily oxidized than H2S. Biological sulfide oxidation exhibited the highest rates at ambient wastewater pH, and the reaction was inhibited at both low and high pH values. Chemical sulfide oxidation was found to produce thiosulfate and sulfate, while elemental sulfur was the main product of biological sulfide oxidation. Based on the investigations, general rate equations and stoichiometric constants were determined, enabling the processes to be incorporated to conceptual sewer process models.  相似文献   

17.
The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on three different biochars derived from agricultural/forestry wastes through pyrolysis at various temperatures (100 to 500 ºC) were investigated. In this study, the H2S breakthrough capacity was measured using a laboratory-characterized using pH and Fourier transform infrared spectroscopy analysis. The results obtained demonstrate that all biochars were effective in H2S sorption. The sorption capacity of the biochar for H2S removal is related to the pyrolysis temperature and pH of the surface. Certain threshold ranges of the pyrolysis temperature (from 100 to 500 ºC) and pH of the surface are presented. It also concluded that the sorption capacity (for removing H2S) of rice hull-derived biochar is the largest in three biochars (camphor-derived biochar, rice hull-derived biochar, and bamboo-derived biochar). These observations will be helpful in designing biochar as engineered sorbents for the removal of H2S.Implications: This paper focuses on the adsorption of hydrogen sulfide (H2S) by biochars derived from wastes. The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on three different boichars derived from agricultural/forestry wastes through pyrolysis at various temperatures were investigated. In this study, the H2S breakthrough capacity was measured using laboratory characterization with pH and Fourier-transform infrared spectroscopy analysis. The results obtained demonstrate that all biochars were effective in H2S sorption. The sorption capacity of the biochar for H2S removal is related to the pyrolysis temperature and pH of the surface.  相似文献   

18.
The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.  相似文献   

19.
城市污水处理厂除臭生物滤池运行效果及影响因素研究   总被引:1,自引:0,他引:1  
对山东某城市污水处理厂散发的恶臭气体进行除臭研究,考察了除臭生物滤池的运行效果、工艺影响因素和除臭生物滤池内微生物相特点。结果表明:(1)在进气量为828 m3/h、气体停留时间为30 s、硫化氢和氨进气质量浓度分别为0.5~28.4、0.9~34.3 mg/m3的条件下,稳定运行时,大部分时间硫化氢和氨去除率分别达98%和80%以上,而且除臭生物滤池对于进气负荷具有较强的抗冲击能力。(2)当填料含湿量为43.6%~63.4%时,硫化氢去除率在90%以上;氨去除受填料含湿量的影响较大,填料含湿量越高越利于氨的去除。(3)在处理低浓度含硫化氢和氨的恶臭气体时,生物除臭工程可以在低填料pH(3.0左右)下长期运行,并保持较高的恶臭气体去除率。(4)运行第60天后,当温度为10℃以上时,硫化氢和氨去除率几乎不受影响;第169天后,当温度降至10℃以下时,硫化氢和氨去除率均有一定程度的下降,最低分别为94.6%和79.8%。(5)除臭生物滤池稳定运行时,优势硫氧化菌主要为嗜酸性硫细菌。  相似文献   

20.
采用实验室规模的生物滤池对含硫化氢、氨和微生物气溶胶的气体进行处理,并对海绵、陶粒、堆肥和空心塑料小球4种物质作为反应器填料的性能进行比较。结果表明,不同填料生物滤池对硫化氢、氨和微生物气溶胶的去除效率明显不同,去除效率从高到低的顺序依次为海绵、陶粒、堆肥和空心塑料小球生物滤池。海绵和陶粒生物滤池出气异养细菌和真菌主要以小粒径粒子为主。在同样的进气和运行条件下,堆肥填料层的压力降最大,其次是陶粒和空心塑料小球填料层,海绵填料层的压力降最小。对4种填料的性能进行综合比较,海绵和陶粒较适宜作为处理硫化氢、氨和微生物气溶胶的生物滤池填料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号