首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of copper, lead, chromium, zinc, cadmium, arsenic and silver were determined in periphyton specimens obtained with a diatometer collector. Stations selected were along three important bayous of the Calcasieu River system. Distributions of some metals in the organisms were similar to those found in sediment from the same locations, while other metals appeared to be similar to water concentrations. Concentration ratios of periphyton over sediment greatly exceeded one for the metals chromium, zinc, cadmium, arsenic and silver. The concentrations of heavy metals in the periphyton appeared to yield more information about pollutants than either water or sediment samples collected at the periphyton stations.  相似文献   

2.
以北京近郊通州凉水河底泥沉积物为研究对象,利用环流槽(annular flume)模拟河流水力学条件,研究了重金属(Cr、Cu、Zn和Pb)在上覆水、悬浮颗粒物(SPMs)以及底泥中的交换、分配、形态分布与转化特征。结果表明,在动态水流环境条件下,加入到上覆水体中的重金属离子(5 mg/L)很快被吸附到SPMs上,模拟运行1 h后,上覆水中重金属的浓度(低流速条件下Zn除外),均不到初始值的3%;而SPMs中重金属的浓度在实验初期随着运行时间而降低,并且其浓度在低流速(0.2 m/s)时较高流速(0.35 m/s)条件下高,这是由于"颗粒物浓度效应"所致。在整个模拟运行周期(35 d)内,表层底泥中重金属形态发生了改变。其中,重金属的F4(硫化物+有机物)形态由于其与硫化物结合的形态被氧化而逐渐释放出来,并最终剩下不易氧化的有机物结合形态。与此同时,释放出的重金属通过再分配作用以易解析的F1~F3形态吸附于SPMs及底泥沉积物中,从而导致这3种形态浓度有所升高。  相似文献   

3.
A storage pond dike failure occurred at the Tennessee Valley Authority Kingston Fossil Plant that resulted in the release of over 3.8 million cubic meters (5 million cubic yards) of fly ash. Approximately half of this material deposited in the main channel of the Emory River, 3.5 km upstream of the confluence of the Emory and Clinch Rivers, Tennessee, USA. Remediation efforts to date have focused on targeted removal of material from the channel through hydraulic dredging, as well as mechanical excavation in some areas. The agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could alter the redox state of metals present in the fly ash and thereby change their sorption and mobility properties. A series of extended elutriate tests were used to determine the concentration and speciation of metals released from fly ash. Results indicated that arsenic and selenium species released from the fly ash materials during elutriate preparation were redox stable over the course of 10d, with dissolved arsenic being present as arsenate, and dissolved selenium being present as selenite. Concentrations of certain metals, such as arsenic, selenium, vanadium, and barium, increased in the elutriate waters over the 10d study, whereas manganese concentrations decreased, likely due to oxidation and precipitation reactions.  相似文献   

4.
This work investigates arsenic mobility, bioavailability and toxicity in marine port sediments using chemical sequential extraction and laboratory toxicity tests. Sediment samples were collected from two different Mediterranean ports, one highly polluted with arsenic and other inorganic and organic pollutants (Estaque port (EST)), and the other one, less polluted, with a low arsenic content (Saint Mandrier port (SM)). Arsenic distribution in the solid phase was studied using a sequential extraction procedure specifically developed for appraising arsenic mobility in sediments. Toxicity assessment was performed on sediment elutriates, solid phases and aqueous arsenic species as single substance using the embryo-toxicity test on oyster larvae (Crassostrea gigas) and the Microtox test with Vibrio fischeri. Toxicity results showed that all sediment samples presented acute and sub-chronic toxic effects on oyster larvae and bacteria, respectively. The Microtox solid phase test allow to discriminate As-contaminated samples from the less contaminated ones, suggesting that toxicity of whole sediment samples is related to arsenic content. Toxicity of dissolved arsenic species as single substance showed that Vibrio fischeri and oyster larvae are most sensitive to As(V) than As(III). The distribution coefficient (Kd) of arsenic in sediment samples was estimated using results obtained in chemical sequential extractions. The Kd value is greater in SM (450 L kg?1) than in EST (55 L kg?1), indicating that arsenic availability is higher for the most toxic sediment sample (Estaque port). This study demonstrates that arsenic speciation play an important role on arsenic mobility and its bioavailability in marine port sediments.  相似文献   

5.
Arsenic mobility in contaminated lake sediments   总被引:6,自引:0,他引:6  
An arsenic contaminated lake sediment near a landfill in Maine was used to characterize the geochemistry of arsenic and assess the influence of environmental conditions on its mobility. A kinetic model was developed to simulate the leaching ability of arsenic in lake sediments under different environmental conditions. The HM1D chemical transport model was used to model the column experiments and determine the rates of arsenic mobility from the sediment. Laboratory studies provided the information to construct a conceptual model to demonstrate the mobility of arsenic in the lake sediment. The leaching ability of arsenic in lake sediments greatly depends on the flow conditions of ground water and the geochemistry of the sediments. Large amounts of arsenic were tightly bound to the sediments. The amount of arsenic leaching out of the sediment to the water column was substantially decreased due to iron/arsenic co-precipitation at the water-sediment interface. Overall, it was found that arsenic greatly accumulated at the ground water/lake interface and it formed insoluble precipitates.  相似文献   

6.
Wang S  Mulligan CN 《Chemosphere》2009,74(2):274-279
Arsenic and heavy metal mobilization from mine tailings is an issue of concern as it might pose potential groundwater or ecological risks. Increasing attention recently has been focused on the effects of natural organic matter on the mobility behavior of the toxicants in the environment. Column experiments were carried out in this research study to evaluate the feasibility of using humic acid (HA) to mobilize arsenic and heavy metals (i.e., Cu, Pb and Zn) from an oxidized Pb-Zn mine tailings sample collected from Bathurst, New Brunswick, Canada. Capillary electrophoresis analyses indicated that arsenate [As(V)] was the only extractable arsenic species in the mine tailings and the addition of HA at pH 11 did not incur the oxidation-reduction or methylation reactions of arsenic. A 0.1% HA solution with an initial pH adjusted to 11 was selected as the flushing solution, while distilled water (initial pH adjusted to 11) was used as the control to account for the mobilization of arsenic and the heavy metals by physical mixing and the effect of pH. It was found that the HA could significantly enhance the mobilization of arsenic and heavy metals simultaneously from the mine tailings. After a 70-pore-volume-flushing, the mobilization of arsenic, copper, lead and zinc reached 97, 35, 838 and 224 mg kg(-1), respectively. The mobilization of arsenic and the heavy metals was found to be positively correlated with the mobilization of Fe in the presence of the HA. Moreover, the mobilization of arsenic was also correlated well with that of the heavy metals. The mobilization of co-existing metals to some extent might enhance arsenic mobilization in the presence of the HA by helping incorporate it into soluble aqueous organic complexes through metal-bridging mechanisms. Use of HA in arsenic and heavy metal remediation may be developed as an environmentally benign and possible effective remedial option to reduce and avoid further contamination.  相似文献   

7.
Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity.  相似文献   

8.
巢湖表层沉积物中重金属的分布特征及其污染评价   总被引:14,自引:1,他引:13  
以巢湖表层沉积物为研究对象,利用BCR连续提取法研究了沉积物中Cr、Co、Ni、Cu、Cd、Zn、V和Pb等8种重金属元素的分布特征,同时运用潜在风险指数法和地累积指数法综合评价了巢湖沉积物中重金属的生态风险。结果表明,巢湖沉积物中的重金属含量在空间上表现出东西高、中间低的分布特征。巢湖表层沉积物中Cr、Co、Ni、V和Cu 5种重金属都主要以残渣态为主,Zn和Cd主要以弱酸提取态为主,Pb以可还原态为主,同时,Co和Cu 2种元素的可交换态及可还原态含量占有较高比例,具有潜在危害性。相关性分析显示,Cr、Cu、Pb、Ni、Zn和Cd 6种重金属元素的来源和分布可能具有相似性,Co和V 2种重金属元素具有相似的地球化学行为且其主要来源可能与其他几种重金属不同。潜在生态风险指数评价结果表明,巢湖表层沉积物中8种重金属元素构成的生态危害顺序为:Cd>Pb>Co>Cu>Ni>Zn>V>Cr,Cd具有高的生态危害等级,其他7种重金属元素均为低生态危害等级。地累积指数法评价结果表明:巢湖沉积物重金属元素的富集程度为Cd>Zn>Pb>Co>Cu>V>Ni>Cr,Cr属于清洁级别,Co、Cu、V和Ni处于轻度污染水平,Zn和Pb处于偏中度污染,Cd达到了重污染水平。  相似文献   

9.
Qu X  He PJ  Shao LM  Lee DJ 《Chemosphere》2008,70(5):769-777
Selected heavy metals (HMs) including Cd, Cr, Cu, Ni, Pb and Zn initially released from a full-scale bioreactor landfill were monitored over the first 20 months of operation. At the initial landfill stage, the leachate exhibited high HMs release, high organic matter content (27000-43000gl(-1) of TOC) and low pH (5-6). By the fifth month of landfilling, the methanogenic stage had been established, and HMs release was reduced below the Chinese National Standards. Total released HMs accounted for less than 1% of landfill deposited during the investigated period. Most landfill HMs were inorganic. Fourier-transform infrared (FT-IR) spectra data and model calculations using Visual MINTEQ indicated that humic substances strongly affected the mobility of organic fractions of HMs in the methanogenic landfill. The initial rates of HMs release could be enhanced by recycling the leachate back to bioreactor landfill, but the total quantity released may be reduced by early establishment of methanogenic stage in bioreactor landfill.  相似文献   

10.
Knowledge of chemical mobility of heavy metals is fundamental to understanding their toxicity, bioavailability, and geochemical behavior. In this paper, two different methods, i.e. mineralogical means and sequential extractions, were employed to analyze the total contents, existing states, and chemical forms of heavy metals in coal mine spoils. The results demonstrate that the mobility of heavy metals in coal mine spoils depends not only on their existing states and the stability of their host minerals but also on the properties of the coal mine spoils. In the process of coal mine spoils-water interaction, sulfides that contain heavy metals first break down and release metals, which are then adsorbed and complexed by the iron oxyhydroxide colloid resulting from pyrite oxidization and organic matter. During the natural weathering of coal mine spoils, only a small fraction of these metals are released to the environment, and most of them still remains in the residual material.  相似文献   

11.
The degree of heavy metal contamination in the fine-grained (<63 microm) and sand-sized (2 mm-63 microm) fractions of surface sediments in 18 different mangrove swamps (144 random samples) in Hong Kong was examined. Higher concentrations of heavy metals were found in the fine-grained than the sand-sized fractions of the sediment; however, the differences between these two fractions became less significant when the swamp was more contaminated. The principal component analyses show that the 18 mangrove swamps, according to the median concentrations of total heavy metals, were clustered into four groups. The first group included three mangrove swamps in Deep Bay region which are seriously contaminated, with heavy metal concentrations in sediments around 80 microg g(-1) Cu, 240 microg g(-1) Zn, 40 microg g(-1) Cr, 30 microg g(-1) Ni, 3 microg g(-1) Cd and 80 microg g(-1) Pb. The second cluster, made up of another four swamps distributed in different geographical locations (two in Sai Kung district and two in Tolo region), also had elevated levels of Cu, Pb, Ni and Cr in the sediments. Field observation reveals that these seven stands received industrial, livestock and domestic sewage as well as pollution from mariculture activities, suggesting that anthropogenic input is the main source of heavy metal contamination in Hong Kong mangroves. The sediments from other mangrove swamps were relatively uncontaminated.  相似文献   

12.
In the analysis of soil samples, batch sequential extraction procedures are traditionally used for the fractionation of trace elements to access their mobility and potential risk for the contamination of groundwater. In the present work a continuous-flow technique has been used that enables not only the fast and efficient leaching of trace elements but as well as time-resolved studies on the mobilization of arsenic and selected heavy metals in different forms to be made. Rotating coiled columns (RCC) earlier used mainly in countercurrent chromatography have been successfully applied to the dynamic leaching of heavy metals from soils contaminated by flooding sludge's. The sample was retained in a PTFE rotating column as the stationary phase whereas aqueous solutions were continuously pumped through. The contents of elements were determined by on-line coupling of RCC and inductively coupled plasma atomic emission spectrometry (ICP-AES). This enables real-time data on the leaching process to be obtained. Dynamic and traditional batch procedures were compared. It has been shown that the aqueous elution under centrifugal forced conditions is much more effective for the mobilization of heavy metals. Hence, the dynamic leaching is characterized by a substantially more intensive interaction between solid and water and is besides substantially more time-saving than the conventional batch procedure. The RCC procedure was also employed for preliminary leaching studies with a simulated "acid rain". In comparison with the water leaching, the mobilization of heavy metals and arsenic from soil samples with employment of simulated acid rain as eluent was less effective.  相似文献   

13.

Heavy metal-contaminated sediments posed a serious threat to both human beings and environment. A biosurfactant, rhamnolipid, was employed as the washing agent to remove heavy metals in river sediment. Batch experiments were conducted to test the removal capability. The effects of rhamnolipid concentration, washing time, solution pH, and liquid/solid ratio were investigated. The speciation of heavy metals before and after washing in sediment was also analyzed. Heavy metal washing was favored at high concentration, long washing time, and high pH. In addition, the efficiency of washing was closely related to the original speciation of heavy metals in sediment. Rhamnolipid mainly targeted metals in exchangeable, carbonate-bound or Fe-Mn oxide-bound fractions. Overall, rhamnolipid biosurfactant as a washing agent could effectively remove heavy metals from sediment.

  相似文献   

14.
The concentration partitioning between the sediment particle and the interstitial water phase plays an important role in controlling the toxicity of heavy metals in aquatic systems. The aim of this study was to assess the sediment quality in a polluted area of the Ziya River, Northern China. The contamination potential and bioavailability of six metals were determined from the concentrations of total metals and the bioavailable fractions. The results showed that the concentrations of Cr, Cu, Ni, Zn, and Pb exceeded the probable effect concentration at several sites. The high geoaccumulation indices showed that the sediments were seriously contaminated by Cd. The ratio of acid-volatile sulfide (AVS) to simultaneously extracted metal (SEM) was higher than 1, which indicated that the availability of metals in sediments was low. The risk assessment of interstitial waters confirmed that there was little chance of release of metals associated with acid-volatile sulfide into the water column. Values of the interstitial water criteria toxicity unit indicated that none of the concentrations of the studied metals exceeded the corresponding water quality thresholds of the US Environmental Protection Agency. Positive matrix factorization showed that the major sources of metals were related to anthropogenic activities. Further, if assessments are based on total heavy metal concentrations, the toxicity of heavy metals in sediment may be overestimated.  相似文献   

15.
Heavy metals are potentially toxic to human life and the environment. Their contaminating effect in soils depends on chemical associations. Hence, determining the chemical form of a metal in soils is important to evaluate its mobility and bioavailability. We utilized a sequential extraction procedure and sorption isotherms (monometal and competitive) to evaluate the mobility and distribution of Cd, Cu, Ni, Pb, and Zn in four soils differing in their physicochemical properties: Calcixerollic Xerochrepts (Cx1 and Cx2), Paralithic Xerorthent (Px) and Lithic Haplumbrept (Lh). Most of the metals retained under point B conditions of sorption isotherms were extracted from the more mobile fractions: exchangeable and carbonates, in contrast with the profiles of the original soils where metals were preferently associated with the residual fraction. In soils having carbonate concentration under 6% (Cx1 and Lh), the exchangeable fraction was predominant, whereas in calcareous soils (Cx2 and Px) metals extracted from carbonates predominated. Partitioning profiles were in accordance with the affinity sequences deduced from the initial slope of isotherms and showed that the soils had a greater number of surface sites and higher affinity for Pb and Cu than for Cd, Ni, or Zn. In general, the simultaneous presence of the cations under study increased the percentages of metals released in the exchangeable fraction. The tendency towards less specific forms was more noticeable in Cx2 and Px soils and for Ni, Zn, and Cd. The affinity of inorganic surfaces was larger for Zn than for Cd or Ni, but the affinity of organic surfaces was larger for Cd or Ni than for Zn.  相似文献   

16.
In this work, characterisation of several ore concentrate remains from an abandoned Pb-Zn mining factory was performed determining chemical and physical properties such as pH, organic carbon content, particle size distribution, total heavy metal content (Pb, Zn, Cu, As and Cd) as well as mineralogical composition which showed, in most cases, the oxidization of the parent ore material (mostly galena: PbS and sphalerite: ZnS) to more mobile fractions as anglesite (PbSO(4)) and goslarite (ZnSO(4)). Moreover, two operational defined extraction procedures commonly used in soil and sediment studies (first and second steps of BCR procedure and DTPA extraction protocol) were applied in the different mining wastes in order to study Pb and Zn mobility and likely bioavailability to Betula pendula growing on the same mining spoils, which presents lead and zinc contents in leaves over ten times background values.  相似文献   

17.
Heavy metal pollution in sediments of the Pasvik River drainage   总被引:15,自引:0,他引:15  
The purpose of this paper is to study the regional impacts of heavy metals (Ni, Cu, Co, Zn, Cd, Pb, Hg) on the watershed of the Pasvik River. On the basis of sediment investigations at 27 stations of the watershed, background concentrations of the heavy metals, vertical distribution of heavy metals in sediments, heavy metal concentrations in surface sediments, contamination degree, and risk index were determined. The atmospheric emissions of Ni, Cu, Co, Zn, Cd and Hg from the smelters and waste waters from tailing dams and mines of the Pechenganickel Company are likely to be the main sources of increasing concentrations observed in recent sediments of the lower river reaches. Lead showed a different pattern from the other heavy metals--increasing Pb concentrations in the upper sediment layers towards the Norwegian side.  相似文献   

18.
Background Acid-volatile sulfide (AVS) is operationally defined as sulfides in sediment, which are soluble in cold acid, and is reported as the most active part of the total sulfur in aquatic sediments. It is a key partitioning phase controlling the activities of divalent cationic heavy metals in sediment. Methods In order to examine this in mangrove environments, six sites were selected along the Jiulong River Estuary in Fujian, China, which had previously been reported to be polluted by heavy metals. Sediments were sampled from 0–60 cm depth at each site, and the spatial distribution of AVS and SEM (simultaneously extracted metals: copper, cadmium, zinc, and lead) were determined. Results and Discussion The results indicate that the AVS concentrations had a spatial variation, ranging from 0.24 to 16.10 μmol g−1 sediment dry weight. The AVS concentration in the surface layer is lower than that of the deeper sediment, with peak values in the 15–30 cm horizon. There was no correlation between the AVS value and organic matter content or total dissolved salts, but a significant positive correlation of AVS with surface sediment (0–5 cm) moisture content was found. This indicates that water logged sediments tend to have a high AVS value. The amount of SEM was within the range of 0.33–2.80 μmol g−1 sediment dry weight and decreased with sediment depth. Conclusions There was a marked variation in AVS and SEM among different sites studied. AVS concentrations were generally lower in the surface sediments, while SEM concentrations slightly decreased with the depth. Higher concentrations of SEM found in the upper layers of the sediments confirm the earlier suggestions that this study area may suffer from increasing heavy metal pollution. Recommendations and Perspectives When monitoring environmental impacts by using AVS, the micro and large-scale spatial variation as well as vertical distribution need to be estimated to avoid misleading results. Both AVS and SEM concentrations in different sediment layers should be taken into account in assessing the potential impact of heavy metals on the biotic environment.  相似文献   

19.
This study examined the effects of heavy metals and plant arsenic uptake on soil arsenic distribution. Chemical fractionation of an arsenic-contaminated soil spiked with 50 or 200mg kg(-1) Ni, Zn, Cd or Pb was performed before and after growing the arsenic hyperaccumulator Pteris vittata L for 8weeks using NH(4)Cl (water-soluble plus exchangeable, WE-As), NH(4)F (Al-As), NaOH (Fe-As), and H(2)SO(4) (Ca-As). Arsenic in the soil was present primarily as the recalcitrant forms with Ca-As being the dominant fraction (45%). Arsenic taken up by P. vittata was from all fractions though Ca-As contributed the most (51-71% reduction). After 8weeks of plant growth, the Al-As and Fe-As fractions were significantly (p<0.01) greater in the metal-spiked soils than the control, with changes in the WE-As fraction being significantly (p=0.007) correlated with plant arsenic removal. The plant's ability to solubilize soil arsenic from recalcitrant fractions may have enhanced its ability to hyperaccumulate arsenic.  相似文献   

20.
Qin F  Shan XQ  Wei B 《Chemosphere》2004,57(4):253-263
Effects of low-molecular-weight organic acids (LMWOAs) and residence time on desorption of Cu, Cd, and Pb from two typical Chinese soils were studied. Citric, malic, and acetic acids were chosen as representatives of LMWOAs commonly present in soils. CaCl(2) and NaNO(3) were used in desorption as they were main soil background electrolytes for comparison. Desorption of Cu, Cd, and Pb from both soils followed the descending order: citric acid>malic acid>acetic acid>CaCl(2)>NaNO(3), which was consistent with the order of stability of Cu-, Cd-, and Pb-LMWOAs complexes from large to small and ion exchange ability of Ca(2+) and Na(+). Desorption of metals by inorganic salts decreased with increasing desorption solution pH. Whereas desorption of metals by LMWOAs showed different trend in response to pH change due to their different complexing abilities. Malic and acetic acids released less metals at low pH 3.1 compared with citric acid at pH 7, indicating that pH was not the dominant factor governing the release of metals. In addition, all LMWOAs desorbed more metals than inorganic salts, CaCl(2) and NaNO(3). Therefore, organic ligands played a dominant role in desorption of heavy metals. More metals were released from Jiangxi soil than from Heilongjiang soil due to lower soil pH, CEC, organic matter content and manganese oxide of Jiangxi soil. Generally, desorption of metals decreased with increasing residence time of metals in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号