首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The reaction between three different Ca-based sorbents and SO2 were studied in a medium temperature range (473–773 K). The largest SO2 capture was found with Ca(OH)2 at 773 K, 126.31 mg SO2?g Ca(OH)2 ?1, and the influence of SO2 concentration on the sorbent utilization was observed. Investigations of the internal porous structure of Ca-based sorbents showed that the initial reaction rate was controlled by the surface area, and once the sul-fated products were produced, pore structure dominated. To increase the surface area of Ca-based sorbents available to interact with and retain SO2, one kind of CaO/activated carbon (AC) sorbent/catalyst was prepared to study the effect of AC on the dispersion of Ca-based materials. The results indicated that the Ca-based material dispersed on high-surface-area AC had more capacities for SO2 than unsupported Ca-based sorbents. The initial reaction rates of the reaction between SO2 and Ca-based sorbents and the prepared CaO/AC sorbents/cata-lysts were measured. Results showed that the reaction rate apparently increased with the presence of AC. It was concluded that CaO/AC was the active material in the des-ulfurization reaction. AC acting as the support can play a role to supply O2 to increase the affinity to SO2. Moreover, when AC is acting as a support, the surface oxygen functional group formed on the surface of AC can serve as a new site for SO2 adsorption.  相似文献   

2.
Abstract

The high temperature CaO/SO2 reaction was studied using four Swedish limestones and one dolomite as sorbents. The measurements were carried out in a vacuum thermogravimetric analysis (TGA) apparatus in order to investigate the intrinsic reaction mechanism. The reaction was found to be fast at the beginning due to the surface reaction, while the subsequent stage was controlled by the product layer diffusion, showing a lower reaction rate. The reaction rate increased as temperature increased up to 1000 °C in the range tested. SO2 partial pressure weakly affected the reaction. The fine sorbent particles used in the study resulted in the high CaO conversion. Further grinding of the sorbents gave a small increase in CaO conversion. Sintering generally decreased the initial reactivity but might not affect the ultimate CaO capacity. The larger pores in nascent CaO particles were valuable for the initial reaction conversion.  相似文献   

3.
Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.  相似文献   

4.
Bodénan F  Deniard P 《Chemosphere》2003,51(5):335-347
For the first time, a set of samples of European flue gas cleaning residues, mainly from the incineration of municipal solid waste (MSW), has undergone a mineralogical study. The residues are the result of the neutralization of acid flue gases by lime, the predominant method adopted in Europe, using dry and semi-dry washing processes. The study protocol combines physico-chemical analytical techniques (XRD, FTIR, DSC/TGA) and global chemical analysis enabling identification of the chemical composition of the main constituents, particularly chlorinated Ca-based phases, as well as establishment of modal distributions of the represented phases, both crystalline and amorphous. The samples are slightly hydrated and values vary for trapped Cl, S and even CO(2). The main crystalline phases are NaCl, KCl, CaSO(4), CaCO(3), Ca(OH)(2) and calcium hydroxychloride CaOHCl. CaOHCl is the main chlorine phase, regardless of the treatment process, filtration mode, and specific surface of the Ca-based sorbent. This phase develops during neutralization of HCl by excess lime present according to the reaction Ca(OH)(2)+HCl-->CaOHCl+H(2)O, to the detriment of a complete yield involving the two lime OH groups with formation of CaCl(2).2H(2)O. In addition, it seems that gas temperatures above 150 degrees C increase competition between lime-based neutralization of HCl, SO(2) acid flue gases and CO(2) trapping, thus reducing washing efficiency.  相似文献   

5.
Novel silica-enhanced lime sorbents were tested in a bench-scale sand-bed reactor for their potential for SO2 removal from flue gas. Reactor conditions were 64°C (147°F), relative humidity of 60 percent [corresponding to an approach to saturation temperature of 10°C (18°F)], and inlet SO2 concentration of 500 or 1000 ppm. The sorbents were prepared by pressure hydration of CaO or Ca(OH)2 with siliceous materials at 100°C (101 kPa) [212°F (14.7 psi)] to 230°C (2793 kPa) [446°F (405 psi)] for 15 min to 4 h. Pressure hydration fostered the formation of a sorbent reactive with SO2 from fly ash and Ca(OH)2 in a much shorter time than did atmospheric hydration. The conversion of Ca(OH)2 in the sand-bed reactor increased with the increasing weight ratio of fly ash to lime and correlated well with B.E.T. surface area, increasing with increasing surface area. The optimum temperature range for the pressure-hydration of fly ash with Ca(OH)2 was between 110 and 160°C (230 and 320 °F). The pressure hydration of diatomaceous earth with CaO did not offer significant reactivity advantages over atmospheric hydration; however, the rate of enhancement of Ca(OH)2 conversions was much faster with pressure hydration. Scanning electron microscope (SEM) and x-ray diffraction studies showed solids of different morphology with different fly ash/lime ratios and changing conditions of pressure hydration.  相似文献   

6.
Catalyst sorbents based on alumina-supported CuO, CeO2, and CuO-CeO2 were applied to a dry scrubber to clean up the SO2/HCl/NO simultaneously from pilot-scale fluidized-bed incineration flue gas. In the presence of organic compounds, CO and the submicron particles SO2 and HCI removed by the fresh catalyst sorbents and NO reduced to N2 by NH3 under the catalysis of fresh and spent desulfurization/dechloridization (DeSO2/DeHCl) catalyst sorbents (copper compounds, Cu, CuO, and CuSO4) were evaluated in this paper. The fresh and spent catalyst sorbents were characterized by the Brunner-Emmett-Teller method (BET), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), inductively coupled plasma-mass spectrometry (ICP-MS), and the elemental analyzer (EA). The study showed that the performances of CuO, CeO2, and CuO-CeO2/gamma-Al2O3 were better than that of Ca(OH)2. The removal efficiency of SO2 and HCl was 80-95% in the dry scrubber system. Under NH3/NO = 1, NO could not be reduced to N2 because it was difficult to control the ratio of air/fuel in the flue gas. For estimating the feasibility of regenerating the spent catalyst sorbents, BET and EA analyses were used. They indicated that the pore structures were nearly maintained and a small amount of carbon accumulated on their surface.  相似文献   

7.
ABSTRACT

The capture of elemental mercury (Hg0) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sor-bents was examined in this bench-scale study under conditions prevalent in coal-fired utilities. Ca-based sorbent performances were compared with that of an activated carbon. Hg0 capture of about 40% (nearly half that of the activated carbon) was achieved by two of the Ca-based sorbents. The presence of sulfur dioxide (SO2) in the simulated coal combustion flue gas enhanced the Hg0 capture from about 10 to 40%. Increasing the temperature in the range of 65-100 °C also caused an increase in the Hg0 capture by the two Ca-based sorbents. Mercuric chloride (HgCl2) capture exhibited a totally different pattern. The presence of SO2 inhibited the HgCl2 capture by Ca-based sorbents from about 25 to less than 10%. Increasing the temperature in the studied range also caused a decrease in HgCl2 capture. Upon further pilot-scale confirmations, the results obtained in this bench-scale study can be used to design and manufacture more cost-effective mercury sorbents to replace conventional sorbents already in use in mercury control.  相似文献   

8.
The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbents for flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a laboratory scale grinder prior to slurring in order to decrease the slurring time needed for the sorbent to be reactive with SO2. Reactivity of ADVACATE sorbents with SO2 in the bench-scale reactor correlated with their surface area.

ADVACATE sorbents produced with ground fly ash were evaluated in the 50 cfm (85 m3/h) pilot plant providing 2 s duct residence time. ADVACATE sorbent was produced by slurrying ground fly ash (median particle size of 4.3 µm) with Ca(OH)2 at the weight ratio of 3:1 at 90°C (194°F) for 3hto yield solids with 30 weight percent of initial free moisture. When this sorbent was injected into the duct with 1500 ppm SO2 and at 11°C (20°F) approach to saturation, the measured SO2 removal was approximately 60percent at a Ca/S stoichiometric ratio of 2. Previously, when ADVACATE sorbent was produced at 90°C (194°F) and at the same fly-ash-to-Ca(OH)2 weight ratio using unground fly ash, removal under the same conditions in the duct was approximately 50 percent following 12 h slurring. The report presents the results of pilot-scale recycle tests at the recycle ratio of 2. Finally, the report discusses future U.S. Environmental Protection Agency plans for commercialization of ADVACATE.  相似文献   

9.
EPA’s efforts to develop low cost, retrofitable flue gas cleaning technology include the development of highly reactive sorbents. Recent work addressing lime enhancement and testing at the bench-scale followed by evaluation of the more promising sorbents in a pilot plant are discussed here.

The conversion of Ca(OH)2 with SO2 increased several-fold compared with Ca(OH)2 alone when Ca(OH)2 was slurrled with fly ash first and later exposed to SO2 in a laboratory packed bed reactor. Ca(OH)2 enhancement increased with the increased fly ash amount. Dlatomaceous earths were very effective reactivity promoters of lime-based sorbents. Differential scanning calorimetry of the promoted sorbents revealed the formation of a new phase (calcium silicate hydrates) after hydration, which may be the basis for the observed Improved SO2 capture.

Fly ash/lime and diatomaceous earth/lime sorbents were tested in a 100 m3/h pilot facility incorporating a gas humidifier, a sorbent duct injection system, and a baghouse. The inlet SO2 concentration range was 1000-2500 ppm. With once-through dry sorbent injection into the humidified flue gas [approach to saturation 10–20°C (18–36°F) in the baghouse], the total SO2 removal ranged from 50 to 90 percent for a stoichiometric ratio of 1 to 2. Recycling the collected solids resulted in a total lime utilization exceeding 80–90 percent. Increased lime utilization was also investigated by the use of additives.  相似文献   

10.
Abstract

Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorp-tion capacities (~100 μg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.  相似文献   

11.
This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300,000 (g gas/cm2/s/atm gas), respectively. Thus, the kinetics of the calcination reaction were found to be much faster (approximately 500 times) than those of the sulfation reaction examined previously in this laboratory.  相似文献   

12.
An integrated approach for the simultaneous reduction of major combustion-generated pollutants from power plants is presented along with a simplified economic analysis. With this technology, the synergistic effects of high-temperature sorbent/coal or sorbent/natural gas injection and high-temperature flue gas filtration are exploited. Calcium-based (or Na-based, etc.) sorbents are sprayed in the post-flame zone of a furnace, where they react with S- and Cl-containing gases to form stable salts of Ca (or Na, etc.). The partially reacted sorbent is then collected in a high-temperature ceramic filter, which is placed downstream of the sorbent injection point, where it further reacts for a prolonged period of time. With this technique, both the likelihood of contact and the length of time of contact between the solid sorbent particles and the gaseous pollutants increase, because reaction takes place both in the furnace upstream of the filter and inside the filter itself. Hence, the sorbent utilization increases significantly. Several pollutants, such as SO2, H2S, HCl, and particulate (soot, ash, and tar), may be partially removed from the effluent. The organic content of the sorbents (or blends) also pyrolyzes and reduces NOx. Unburned carbon in the ash may be completely oxidized in the filter. The filter is cleaned periodically with aerodynamic regeneration (back pulsing) without interrupting furnace operation. The effectiveness of this technique has been shown in laboratory-scale experiments using either rather costly carboxylic salts of Ca or low- to moderate-cost blends of limestone, lime, or sodium bicarbonate with coal fines. Injection occurred in the furnace at 1150 degrees C, while the filter was maintained at 600 degrees C. Results showed that 65 or 40% SO2 removal was obtained with calcium formate or a limestone/coal blend, respectively, at an entering calcium-to-sulfur molar ratio of 2. A sodium bicarbonate/coal blend resulted in 78% SO2 removal at a sodium-to-sulfur molar ratio of 2. HCl removal efficiencies have been shown to be higher than those for SO2. NOx reductions of 40% have been observed with a fuel (coal)-to-air equivalence ratio, phi, around 2. The filter has been shown to be 97-99% efficient in removing PM2.5 particulates. Calculations herein show that this integrated sorbent/filter method is cost-effective, in comparison with current technologies, on both capital cost ($/kW) and levelized cost ($/ton pollutant removed) bases, if a limestone/coal mixture is used as the sorbent for fossil fuel plants. Capital costs for the filter/sorbent combination are estimated to be in the range of $61-$105/kW for a new plant. Because current technologies are designed for removing one pollutant at a time, both their cost and space requirements are higher than those of this integrated technique. At the minimum projected removal efficiencies for HCl/SO2/NOx of about 40%, the levelized costs are projected to be $203-$261/ton of combined pollutant SO2/HCl/NOx and particulates removed from coal-fired power plants.  相似文献   

13.
采用共沉淀法制备Cu—Zn—Fe脱硫剂,优化共沉淀制备工艺。固定床实验结果表明,共沉淀溶液中金属离子总浓度为0.6mol/L,焙烧温度600℃,添加10%活性助剂Cu时所得Cu—Zn—Fe脱硫剂循环脱硫性能最佳,此时ZFDCu10脱硫剂的硫容可达到41.2gS/100g脱硫剂。XRD和SEM对铁锌基脱硫剂的表征结果表明,加入Cu助剂后少量的ZnO、CuO可阻碍ZnFe2O4晶粒聚集,增强铁锌基脱硫剂活性组分的分散性,避免大晶粒的ZnFe2O4硫化时形成较多的产物层而降低脱硫剂的利用率。实验结果为制备脱硫性能较好的Cu-Zn-Fe脱硫剂提供了理论依据。  相似文献   

14.
The information presented in this paper is directed to engineers who are involved with environmental emissions from coal conversion plants. Synthetic sorbents were investigated as an alternative to natural sorbents (limestone) for the removal of SO2 from the combustion gas in a fluidized-bed coal combustor. The sulfation rate of a synthetic sorbent, CaO in α-AI2O3, was determined as a function of gas composition, temperature, and calcium concentration in the sorbent. The reaction was found to be diffusion-controlled above 850°C and kinetically controlled at lower temperatures. The physical characteristics of the support material have a major effect oh the sulfation kinetics. Porosity measurements indicated that supports containing large pores (>0.2 µm) produced sorbents having high sulfation rates and that pores with diameters less than 0.2 µm did not contribute significantly to the capture of SO2. The sorbents SrO in α-AI2O3 and BaO in α-AI2O3 had lower SO2 capture rates than did CaO in α-AI2O3. The alkali metal oxide sorbents K2O and Na2O in α-AI2O3 captured SO2 much faster than did the alkaline earth metal oxides.  相似文献   

15.
采用正交实验 ,研究了水合制备高效钙基烟气脱硫剂时各制备条件对产物的影响。结果表明 ,水合时间、水合温度Ca(OH) 2 /CaSO4的质量比 ,以及飞灰 / (Ca(OH) 2 +CaSO4)质量比四个条件对脱硫剂比表面积的形成有显著的影响 ;从而由单因素实验得出一最佳钙基脱硫剂制备条件组合。此外 ,通过XDR分析 ,测定了脱硫剂的物相组成 ,扫描电镜观察显示飞灰和水合吸收剂具有不同的表面形态  相似文献   

16.
Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 degrees C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.  相似文献   

17.
镁盐改性活性炭对普拉红B的吸附性能研究   总被引:1,自引:0,他引:1  
运用化学沉淀-原位复合法制得氢氧化镁/活性炭复合材料(Mg(OH)2/AC),对其比表面积和XRD谱进行了表征,考察了该复合材料对普拉红B的脱色性能.结果表明,在293~313 K下,Langmuir模型和Freundlich模型都能很好地描述Mg(OH)2/AC对普拉红B的等温吸附过程,而Langmuir模型更为合适...  相似文献   

18.
Potassium-fly ash (K-FA) sorbents were investigated for high-temperature CO2 sorption. K-FAs were synthesised using coal fly ash as source of silica and aluminium. The synthesised materials were also mixed with Li2CO3 and Ca(OH)2 to evaluate their effect on CO2 capture. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO2 uptake of 1.45 mmol CO2/g sorbent for K-FA 1:1 at 700 °C. The CO2 sorption was enhanced by the presence of Li2CO3 (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO2/g sorbent at 700 °C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10 % Li2CO3 also accelerated sorption and desorption. The results suggest that the increased uptake of CO2 and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO2 in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO2 uptake and reaction rates over 10 cycles.  相似文献   

19.
利用过氧化钙(CaO2)遇水释放氧气的特性,采用混合法将CaO2载入到磷酸钙骨水泥(CPC)中,并通过挤出-滚圆造粒方法制备出CPC/CaO2氧缓释复合材料,旨在为污染地下水的好氧生物修复技术提供一种长期、高效的供氧源。由X射线衍射(XRD)分析可知,通过固相反应制取的CPC主要成分为Ca5(PO4)3(OH)和Ca10(PO4)6(OH)2,具有较快的固化时间和固化效果;CPC/CaO2氧缓释复合材料分3个阶段进行释氧,其中2、3阶段分别符合一级和零级释氧动力学特征,且其释氧速率和释氧周期得到明显改善。本研究成果可用于实际地下水修复工程,解决污染地下水原位生物修复过程中溶解氧(DO)的输送问题。  相似文献   

20.
Assessing sorbents for mercury control in coal-combustion flue gas   总被引:1,自引:0,他引:1  
Sorbent injection for Hg control is one of the most promising technologies for reducing Hg emissions from power-generation facilities, particularly units that do not require wet scrubbers for SO2 control. Since 1992, EPRI has been assessing the performance of Hg sorbents in pilot-scale systems installed at full-scale facilities. The initial tests were conducted on a 5,000-acfm (142-m3/min) pilot baghouse. Screening potential sorbents at this scale required substantial resources for installation and operation and did not provide an opportunity to characterize sorbents over a wide temperature range. Data collected in the laboratory and in field tests indicate that sorbents are affected by flue gas composition and temperature. Tests carried out in actual flue gas at a number of power plants also have shown that sorbent performance can be site-specific. In addition, data collected at a field site often are different from data collected  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号