首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.

Purpose

The aim of this study was to prepare a highly active immobilized titania/silica photocatalyst and to test its performance in situ toward degradation of toluene as one of the major toxic indoor contaminants.

Methods

In this work, two different titania layers immobilized on Al sheets were synthesized via low temperature sol?Cgel method employing presynthesized highly active titania powders (Degussa P25 and Millennium PC500, mass ratio 1:1): (a) with a silica/titania binder and a protective layer and (b) without the binder. The photocatalysts were characterized by X-ray diffraction, nitrogen sorption measurements, scanning electron microscopy (SEM), infrared spectroscopy, and UV?Cvis diffuse reflectance spectroscopy (DRS). The in situ photocatalytic degradation of gaseous toluene was selected as a probe reaction to test photocatalytic activity and to verify the potential application of these materials for air remediation.

Results

Results show that nontransparent highly photocatalytically active coatings based on the silica/titania binder and homogeneously dispersed TiO2 powders were obtained on the Al sheets. The crystalline structure of titania was not altered upon addition of the binder, which also prevented inhomogeneous agglomeration of particles on the photocatalyst surface. The photoactivity results indicate that the adsorption properties and photocatalytic activity of immobilized photocatalysts with the silica/titania binder and an underlying protective layer were very effective and additionally, they exhibited considerably improved adhesion and uniformity.

Conclusion

We present a new highly photocatalytically active immobilized catalyst on a convenient metallic support, which has a potential application in an air cleaning device.  相似文献   

2.

Background, aim

The aims of the NORMACAT project are: to develop tools and unbiased standardized methods to measure the performance and to validate the safety of new materials and systems integrating photocatalysis, to develop new photocatalytic media with higher efficiency and to give recommendations aimed at improving the tested materials and systems.

Method

To achieve this objective, it was necessary to design standardized test benches and protocols to assess photocatalytic efficiency of materials or systems used in the treatment of volatile organic compounds (VOCs) and odour under conditions close to applications. The tests are based on the validation of robust analytical methods at the parts per billion by volume level that not only follow the disappearance of the initial VOCs but also identify the secondary species and calculate the mineralization rates.

Results

The first results of inter-laboratory closed chamber tests, according to XP B44-013 AFNOR standard, are described. The photocatalytic degradation of mixtures of several defined pollutants under controlled conditions (temperature, relative humidity, initial concentration) was carried out in two independent laboratories with the same photocatalytic device and with various analytical procedures. Comparison of the degradation rate and of the mineralization efficiency allowed the determination of the clean air delivery rate in both cases. Formaldehyde was the only by-product detected during photocatalytic test under standardized experimental conditions. The concentration of transient formaldehyde varied according to the initial VOC concentration. Moreover the photocatalytic reaction rate of formaldehyde in mixture with other pollutants was analysed. It was concluded that formaldehyde concentration did not increase with time.

Conclusion??perspective

This type of experiment should allow the comparison of the performances of different photoreactors and of photocatalytic media under controlled and reproducible conditions against mixtures of pollutants including formaldehyde.  相似文献   

3.

Introduction

Schwertmannite was synthesized through an oxidation of FeSO4 by Acidithiobacillus ferrooxidans LX5 cell suspension at an initial pH?2.5 and 28°C for 3?days and characterized using X-ray diffraction spectroscopy and scanning electron microscope. The schwertmannite photocatalytic degradation of methyl orange (MO) by oxalate was investigated at different initial pH values, concentrations of schwertmannite, oxalate, and MO.

Results

The results demonstrated that photodegradation of MO in the presence of schwertmannite or oxalate alone was very weak. However, the removal of MO was significantly enhanced when schwertmannite and oxalate coexisted in the reaction system. Low pH (4 or less) was beneficial to the degradation of MO. The optimal doses of schwertmannite and oxalate were 0.2?g?L?1 and 2?mM, respectively. Hydroxyl radicals (·OH) and Fe(II), the intermediate products, were also examined during the reaction to explore their correlation with the degradation of MO.

Conclusion

A possible mechanism for the photocatalytic decomposition of MO in the study was proposed. The formation of Fe(III)-oxalate complexes on the surface of schwertmannite was a precursor of H2O2 and Fe(II) production, further leading to the yield of ·OH responsible for the decomposition of MO.  相似文献   

4.

Background

The photocatalytic degradation of pyrene under UV (125?W Hg-Arc, 10.4?mW/cm2) irradiation of TiO2 aqueous suspension has been found to be highly improved with the dissolved transition metal ions like Cu2+, Fe3+, Ag+, and Au3+, etc. As the reduction potential of these metals lies below the conduction band (CB) position (?0.1?eV) of TiO2, the photoexcited electron transfer occurs more readily and reduces electron?Chole recombination rate. Therefore, it has a beneficial influence on the photocatalytic ability of TiO2 because of rapid Fermi energy equilibrium between the CB of TiO2 and its surface adsorbed metal ions.

Results and discussion

The Fermi level is referred to as the electrochemical potential and plays an important role in the band theory of solids. When metal and semiconductor are in contact, electron migration from photoirradiated semiconductor to the deposited metal occurs at the interface until two Fermi levels equilibrate and enhanced the photocatalytic activity of semiconductor photocatalyst. Ni2+ having more negative reduction potential (?0.25?eV) than the CB of TiO2 imparts negligible co-catalytic activity to TiO2 photoreaction. It also revealed that loading of Au3+ ions displayed higher degradation rate of pyrene than Au photodeposition. Furthermore, when the amount of dissolved Fe+3 and Au3+ ions gradually increases from 0.1 to 2?wt.%, the pyrene photodecomposition rate also become faster.  相似文献   

5.

Introduction

This study of photocatalytic degradation of wastewater was carried out in alveolar cell ??-SiC foam-structured photocatalytic reactors working in a recirculation mode. The immobilization of TiO2 on ??-SiC foams was efficiently obtained through a sol?Cgel technique in acidic conditions.

Discussion

In order to optimize degradation yields obtained by the foam-structured prototype reactor for the photocatalytic water treatment, the operating conditions of the photoreactor have been investigated and the efficiency of the process was evaluated by measuring the photocatalytic degradation of Diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl-urea)) under UV irradiation. Kinetic studies were carried out by investigating the influence of different parameters controlling the reaction (TiO2 loading and ??-SiC foam cell size). The ageing of TiO2/??-SiC foam photocatalytic materials and the mineralization (TOC, Cl?, NO3? and NH4+) of Diuron were investigated.  相似文献   

6.

Introduction

The removal of natural organic matter (NOM) from water is becoming increasingly important in order to prevent the formation of carcinogenic disinfection by-products. The inadequate removal of NOM has a bearing on the capacity of the other treatment processes to remove organic micro-pollutants or inorganic species that may be present in the water. New methods are therefore currently being sought to effectively characterise NOM and also to ensure that it is sufficiently removed from drinking water sources.

Methodology

Nitrogen- and palladium-co-doped TiO2 was synthesised by a modified sol?Cgel method and evaluated for its photocatalytic degradation activity on NOM fractions under simulated solar radiation. The photocatalyst was characterised by FT-IR, Raman, XRD, DRUV?Cvis, SEM, TEM, EDS, XPS and TGA. FT-IR confirmed the presence of OH groups on thermally stable, nearly spherical anatase nanoparticles with an average diameter of 20?nm. PdO species appeared on the surface of the TiO2 as small uniformly dispersed particles (2 to 3?nm). A red shift in the absorption edge compared to commercial anatase TiO2 was confirmed by DRUV?Cvis. In order to gain a better insight into the response of NOM to photodegradation, the NOM was divided into three different fractions based on its chemical nature.

Results and discussion

Photodegradation efficiencies of 96, 38 and 15?% were realised for the hydrophobic, hydrophilic and transphilic NOM fractions, respectively. A reasonable mechanism was proposed to explain the photocatalytic degradation of the NOM fractions. The high photocatalytic activity could be attributed to the larger surface area, smaller crystalline size and synergistic effects of the co-dopants N and Pd in the TiO2 crystal.  相似文献   

7.

Introduction

TiO2 anatase nanoplates and hollow microspheres were fabricated by a solvothermal?Chydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals.

Methods

These different morphological structures of TiO2 anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal?Chydrothermal process.

Results and discussion

After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO2 anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO2 anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO2 anatase structures. All TiO2 anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference.

Conclusion

The fluoride free TiO2 anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO2 and NO3 ?.  相似文献   

8.

Introduction

In this work, we report in situ studies of UV photoelectrocatalytic discoloration of a dye (indigo carmine) by a TiO2 thin film in a microreactor to demonstrate the driving force of the applied electrode potential and the dye flow rate toward dye discoloration kinetics.

Methods

TiO2 65-nm-thick thin films were deposited by PVD magnetron sputtering technique on a conducting glass substrate of fluorinated tin oxide. A microreactor to measure the discoloration rate, the electrode potential, and the photocurrent in situ, was developed. The dye solutions, before and after measurements in the microreactor, were analyzed by Raman spectroscopy.

Results

The annealed TiO2 thin films had anatase structure with preferential orientation (101). The discoloration rate of the dye increased with the applied potential to TiO2 electrode. Further, acceleration of the photocatalytic reaction was achieved by utilizing dye flow recirculation to the microreactor. In both cases the photoelectrochemical/photocatalytic discoloration kinetics of the dye follows the Langmuir?CHinshelwood model, with first-order kinetics.

Conclusions

The feasibility of dye discoloration on TiO2 thin film electrodes, prepared by magnetron sputtering using a flow microreactor system, has been clearly demonstrated. The discoloration rate is enhanced by applying a positive potential (E AP) and/or increasing the flow rate. The fastest discoloration and shortest irradiation time (50?min) produced 80% discoloration with an external anodic potential of 0.931?V and a flow rate of 12.2?mL?min?1.  相似文献   

9.

Introduction

In this study, UV/Oxone/Co2+ oxidation process was applied to degradation of ofloxacin (OFL) in the presence of Co2+ as the catalytic and Oxone as the oxidant. The operation parameters including pH, temperature, dosages of reagents, and reaction time were studied in detail.

Results

The results showed that the optimum conditions for the UV/Oxone/Co2+ processes were determined as follows: temperature?=?25°C, pH?=?5.0, [Oxone]?=?0.6?mmol/L, [Oxone]/[Co2+]?=?1,000, and reaction time?=?60?min. Under these conditions, 100% of the OFL degraded. The kinetics was also studied, and degradation of OFL by the UV/Oxone/Co2+ process could be described by first-order kinetics.

Conclusions

Mineralization of the process was investigated by measuring the total organic carbon (TOC), and the TOC decreased by 87.0% after 60?min. This process could be used as a pretreatment method for wastewater containing ofloxacin.  相似文献   

10.

Purpose

The present study aims to investigate the individual and combined effects of temperature, pH, zero-valent bimetallic nanoparticles (ZVBMNPs) dose, and chloramphenicol (CP) concentration on the reductive degradation of CP using ZVBMNPs in aqueous medium.

Method

Iron?Csilver ZVBMNPs were synthesized. Batch experimental data were generated using a four-factor statistical experimental design. CP reduction by ZVBMNPs was optimized using the response surface modeling (RSM) and artificial neural network-genetic algorithm (ANN-GA) approaches. The RSM and ANN methodologies were also compared for their predictive and generalization abilities using the same training and validation data set. Reductive by-products of CP were identified using liquid chromatography-mass spectrometry technique.

Results

The optimized process variables (RSM and ANN-GA approaches) yielded CP reduction capacity of 57.37 and 57.10?mg?g?1, respectively, as compared to the experimental value of 54.0?mg?g?1 with un-optimized variables. The ANN-GA and RSM methodologies yielded comparable results and helped to achieve a higher reduction (>6%) of CP by the ZVBMNPs as compared to the experimental value. The root mean squared error, relative standard error of prediction and correlation coefficient between the measured and model-predicted values of response variable were 1.34, 3.79, and 0.964 for RSM and 0.03, 0.07, and 0.999 for ANN models for the training and 1.39, 3.47, and 0.996 for RSM and 1.25, 3.11, and 0.990 for ANN models for the validation set.

Conclusion

Predictive and generalization abilities of both the RSM and ANN models were comparable. The synthesized ZVBMNPs may be used for an efficient reductive removal of CP from the water.  相似文献   

11.

Background, aim, and scope

This study demonstrated the adsorption capacity of microcystin-LR (MC-LR) onto sediment samples collected from different reservoirs (Emerald and Jade reservoirs) and rivers (Dongshan, Erhjen, and Wukai rivers) in Taiwan to investigate the fate, transport behavior, and photodegradation of MC-LR.

Main features

Langmuir adsorption and photodegradation studies were carried out in the laboratory and tested the capability of sediments for MC-LR adsorption. These data suggested that sediments play a crucial role in microcystins degradation in aquatic systems.

Results and discussion

The results of batch experiments revealed that the adsorption of MC-LR varied significantly with texture, pH, and organic matter content of sediments. Silty and clay textures of the samples were associated with larger content of organic matter, and they displayed the enhanced MC-LR adsorption. Low pH sediment showed increased adsorption of MC-LR. The effective photodegradation of MC-LR (1.6 ??g/mL) was achieved within 60 min under 254 nm light irradiation.

Conclusion

A comparative study of adsorption capacity of all sediment samples was carried out and discussed with respect to different aspects. Among all, sediments collected from Jade reservoir showed enhanced MC-LR adsorption (11.86 ??g/g) due to favored textural properties (BET surface area = 20.24 m2/g and pore volume = 80.70 nm).

Perspectives

These data provide important information that may be applied to management strategies for improvement of water quality in reservoirs and rivers and other water bodies in Taiwan.  相似文献   

12.

Purpose

Exploratory data analysis (EDA) is applied in this research to study the behavior of radioactive aerosols present in the surface atmosphere of Granada, using 7Be as radiotracer. The reason for this study is to reduce the large number of parameters involved in understanding their behavior, given the complexity of the atmosphere.

Methods

Aerosol particles were collected weekly in Granada (Spain) over a 5-year period. Low-background gamma spectrometry was used to determine concentrations of 7Be-aerosol activity. The variables studied were: 7Be concentration, cosmic ray intensity, temperature, temperature interval, rainfall, relative humidity, and Saharan intrusions. Least significant difference test (LSD), hierarchical cluster analysis (HCA), and principal component analysis (PCA) with varimax rotation have been applied to study the datasets.

Results and discussion

The results of our study reveal that aerosol behavior is represented by two principal components which explain 86.23?% of total variance. Components PC1 and PC2 respectively explain 74.61 and 11.62?% of total variance. PC1 explains the cyclical and seasonal pattern of the samples, while PC2 is related to the production of 7Be. In addition, PCA and HCA show good distribution of the samples by families with two groups, summer and winter, at the extremes and spring?Cautumn in the middle. This result corroborates that there are no differences between spring and autumn in the climate of Granada.

Conclusions

EDA has been found to be quite useful in studying the behavior of radioactive aerosols in the surface atmosphere of a city with the climate and geographical characteristics of Granada.  相似文献   

13.

Background, aim and scope

Agrochemicals could reach aquatic ecosystems and damage ecosystem functionality. Natural formicide could be an alternative to use in comparison with the more toxic formicides available on the market. Thus, the objective of this study was to assess the ecotoxicity of the new natural formicide Macex? with a battery of classical aquatic ecotoxicity tests.

Material and methods

Bacteria (Aliivibrio fischeri), algae (Pseudokirchneriella subcapitata), hydra (Hydra attenuata), daphnids (Daphnia magna), and fish (Danio rerio) tests were performed in accordance with international standardized methodologies.

Results

In the range of formicide concentrations tested (0.03 to 2.0?g?L?1) EC50 values varied from 0.49 to >2.0?g?L?1, with P. subcapitata being the most sensitive species and H. attenuata and D. rerio the most tolerant species to this product in aqueous solutions.

Conclusions

This new formicide preparation can be classed as a product of low toxicity compared to the aquatic ecotoxicity of the most common commercialized formicides.  相似文献   

14.

Introduction

Efficient immobilization of TiO2 nanoparticles on the surface of Mg2Al-LDH nanosheets was performed by delamination/restacking process.

Experimental part

The structural and textural properties of as-prepared nanocomposite were deeply analyzed using different solid-state characterization techniques such as: X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopies, chemical analysis, X-ray photoelecton spectroscopy, N2 adsorption?Cdesorption, and electronic microscopy.

Results and discussion

The photocatalytic properties of immobilized TiO2 nanoparticles on Mg2Al were investigated using the photodegradation of two model pollutants: Orange II and 4-chlorophenol, and compared with pure colloidal TiO2 solution.

Conclusion

It appears that Orange II photodegradation was systematically faster and more efficient than 4-chlorophenol photodegradation regardless of the medium pH. Moreover under slightly basic conditions, even if the TiO2 photocatalytic efficiency decreases, photodegradation performed in presence of easily recovered TiO2/Mg2Al1.5 nanocomposite gives rise to comparable or better results than pure TiO2.  相似文献   

15.

Background

Polyvinyl alcohol (PVA) has been widely used as sizing agents in textile and manufacturing industry, and it is a refractory compound with low biodegradability.

Objective

The objective of this paper was to treat the PVA-containing wastewater using gamma irradiation as a pretreatment strategy to improve its biodegradability and to determine the roles of different kinds of radical species played during pretreatment.

Methods

Gamma radiation was carried out in a 60Cobalt source station, PVA concentration was analyzed by using a visible spectrophotometer and specific oxygen uptake rate (SOUR, milligram of O2 per gram of mixed liquor volatile suspended solids (MLVSS) per hour) was measured by a microrespirometer.

Results

The results showed that the biodegradability of PVA-containing wastewater with low initial concentration (e.g., 327.8?mg/l) could be improved greatly with increasing irradiation dose. However, PVA gel formation was observed at higher initial PVA concentration (e.g., 3,341.6?mg/l) and higher irradiation dose, which inhibited PVA degradation by aerobic microorganisms. However, the formed gel could be separated by microfiltration, which led to more than 90% total organic carbon (TOC) removal.

Conclusion

Ionizing radiation could be used as a pretreatment technology for PVA-containing wastewater, and its combination with biological process is feasible.  相似文献   

16.

Purpose and aim

In general, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of copper from water using magnesium alloy as anode and cathode.

Materials and methods

Magnesium alloy of size 2.0 dm2 was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. Copper adsorbed magnesium hydroxide coagulant was characterized by SEM, EDAX, XRD, and FTIR.

Results

The results showed that the optimum removal efficiency of copper is 97.8 and 97.2 % with an energy consumption of 0.634 and 0.996 kWh/m3 at a current density of 0.025 A/dm2, pH of 7.0 for AC and DC, respectively. The adsorption of copper is preferably fitting the Langmuir adsorption isotherm for both AC and DC respectively. The adsorption process follows the second-order kinetics model with good correlation. Temperature studies showed that adsorption was endothermic and spontaneous in nature.

Conclusions

The magnesium hydroxide generated in the cell removes the copper present in the water, reducing the copper concentration to less than 1 mg/L, making it safe for drinking. The results of the scale-up study show that the process was technologically feasible.  相似文献   

17.

Purpose

With the aim of enhanced degradation of azo dye alizarin yellow R (AY) and further removal of the low-strength recalcitrant matter (LsRM) of the secondary effluent as much as possible, our research focused on the combination of aerobic bio-contact oxidation (ABO) with iron/carbon microelectrolysis (ICME) process.

Materials and methods

The combined ABO (with effective volume of 2.4?l) and ICME (with effectively volume of 0.4?l) process were studied with relatively short hydraulic retention time (HRT) of 4 or 6?h.

Results

At the HRT of 6?h with the reflux ratio of 1 and 2, the AY degradation efficiency in the final effluent was >96.5%, and the total organic carbon (TOC) removal efficiency were 69.86% and 79.44%, respectively. At the HRT of 4?h and the reflux ratio of 2, TOC removal efficiency and AY degradation efficiency were 73.94% and 94.89%, respectively. The ICME process obviously enhanced the total AY removal and the generated micromolecule acids and aldehydes then that wastewater backflow to the ABO where they were further biodegraded.

Conclusion

The present research might provide the potential options for the advanced treatment azo dyes wastewater with short HRT and acceptable running costs.  相似文献   

18.

Purpose

Bacterial community structure and the chemical components in aerosols caused by rotating brushes in an Orbal oxidation ditch were assessed in a Beijing municipal wastewater treatment plant.

Methods

Air samples were collected at different distances from the aerosol-generating rotating brushes. Molecular culture-independent methods were used to characterize the community structure of the airborne bacteria in each sample regardless of cell culturability. A clone library of 16S rDNA directly amplified from air DNA of each sample was constructed and sequenced to analyze the community composition and diversity. Insoluble particles and water-soluble ions emitted with microorganisms in aerosols were analysis by a scanning electron microscope together with energy dispersive X-ray spectroscopy and ion chromatogram analyzer.

Results

In total, most of the identified bacteria were Proteobacteria. The majority of sequences near the rotating brushes (the main source of the bioaerosols) were Proteobacteria (62.97 %) with ??-(18.52 %) and ??-(44.45?%) subgroups and Bacteroidetes (29.63 %). Complex patterns were observed for each sampling location, suggesting a highly diverse community structure, comparable to that found in water in the Orbal oxidation ditch. Accompany with microorganisms, 46.36???g/m3 of SO 4 2? , 29.35???g/m3 of Cl?, 21.51???g/m3 of NO 3 ? , 19.76???g/m3 of NH 4 + , 11.42???g/m3 of PO 4 3? , 6.18???g/m3 of NO 2 ? , and elements of Mg, Cl, K, Na, Fe, S, and P were detected from the air near the aerosols source.

Conclusions

Differences in the structure of the bacterial communities and chemical components in the aerosols observed between sampling sites indicated important site-related variability. The composition of microorganisms in water was one of the most important sources of bacterial communities in bioaerosols. Chemical components in bioaerosols may provide a media for airborne microorganism attachment, as well as a suitable microenvironment for their growth and survival in the air. This study will be benefit for the formulation of pollution standards, especially for aerosols, that take into account plant workers?? health.  相似文献   

19.

Introduction

Trends in precipitation pH and conductivity during 1992?C2009, and in ionic compositions from January 2007 to June 2009, are reported from Lushan Mountain, one of the highest mountains in mid-east China. Annual mean pH was in the range of 4.35?C5.01 and showed a statistically very significant (P?P?Results and discussions Over the period of study, Lushan Mountain received more rainfall in spring and summer. The pH values varied seasonally with winter minima. The winter multiyear seasonal mean pH was 4.35. The corresponding summer value was 4.88. SO 4 2? and NO 3 ? were the main anions, and NH 4 + and Ca2+ the main cations. The anion to cation ratio was 0.8?C1.0, and that of [SO 4 2? ] to [NO 3 ? ] was 2.4-3.0, much lower than that of the 1980s. However, sulfuric acid was still the main acid present. The ratio of [NH 4 + ] to [Ca2+] was about 1.0, suggesting that these two alkaline substances provided close acid neutralizing capacity. The ratio of [Cl?] to [Na+] was about 0.67, somewhat lower than that of natural precipitation.

Conclusions

Ionic composition varied seasonally and was closely correlated to the amounts of rainfall and pollution. Trajectory analyses showed that the trajectories to Lushan Mountain could be classified in six clusters and trajectories originating from the South Sea and the areas surrounding Lushan Mountain had the greatest impacts on precipitation chemistry.  相似文献   

20.

Introduction

The degradation and mineralization of two triketone (TRK) herbicides, including sulcotrione and mesotrione, by the electro-Fenton process (electro-Fenton using Pt anode (EF-Pt), electro-Fenton with BDD anode (EF-BDD) and anodic oxidation with BDD anode) were investigated in acidic aqueous medium.

Methods

The reactivity of both herbicides toward hydroxyl radicals was found to depend on the electron-withdrawing effect of the aromatic chlorine or nitro substituents. The degradation of sulcotrione and mesotrione obeyed apparent first-order reaction kinetics, and their absolute rate constants with hydroxyl radicals at pH?3.0 were determined by the competitive kinetics method.

Results and discussion

The hydroxylation absolute rate constant (k abs) values of both TRK herbicides ranged from 8.20?×?108 (sulcotrione) to 1.01?×?109 (mesotrione) L?mol?1?s?1, whereas those of the TRK main cyclic or aromatic by-products, namely cyclohexane 1,3-dione , (2-chloro-4-methylsulphonyl) benzoic acid and 4-(methylsulphonyl)-2-nitrobenzoic acid, comprised between 5.90?×?108 and 3.29?×?109?L?mol?1?s?1. The efficiency of mineralization of aqueous solutions of both TRK herbicides was evaluated in terms of total organic carbon removal. Mineralization yields of about 97?C98% were reached in optimal conditions for a 6-h electro-Fenton treatment time.

Conclusions

The mineralization process steps involved the oxidative opening of the aromatic or cyclic TRK by-products, leading to the formation of short-chain carboxylic acids, and, then, of carbon dioxide and inorganic ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号