首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.

Introduction

The removal of natural organic matter (NOM) from water is becoming increasingly important in order to prevent the formation of carcinogenic disinfection by-products. The inadequate removal of NOM has a bearing on the capacity of the other treatment processes to remove organic micro-pollutants or inorganic species that may be present in the water. New methods are therefore currently being sought to effectively characterise NOM and also to ensure that it is sufficiently removed from drinking water sources.

Methodology

Nitrogen- and palladium-co-doped TiO2 was synthesised by a modified sol?Cgel method and evaluated for its photocatalytic degradation activity on NOM fractions under simulated solar radiation. The photocatalyst was characterised by FT-IR, Raman, XRD, DRUV?Cvis, SEM, TEM, EDS, XPS and TGA. FT-IR confirmed the presence of OH groups on thermally stable, nearly spherical anatase nanoparticles with an average diameter of 20?nm. PdO species appeared on the surface of the TiO2 as small uniformly dispersed particles (2 to 3?nm). A red shift in the absorption edge compared to commercial anatase TiO2 was confirmed by DRUV?Cvis. In order to gain a better insight into the response of NOM to photodegradation, the NOM was divided into three different fractions based on its chemical nature.

Results and discussion

Photodegradation efficiencies of 96, 38 and 15?% were realised for the hydrophobic, hydrophilic and transphilic NOM fractions, respectively. A reasonable mechanism was proposed to explain the photocatalytic degradation of the NOM fractions. The high photocatalytic activity could be attributed to the larger surface area, smaller crystalline size and synergistic effects of the co-dopants N and Pd in the TiO2 crystal.  相似文献   

2.

Objective

This work aims to investigate the correlation between the photocatalytic activity determined by methylene blue bleaching (DIN 52980), stearic acid degradation, and degradation of acetone in gas phase.

Method

The photocatalytic TiO2 coatings included in this investigation ranged from thin commercially available coatings (ActivTM and BioCleanTM) and ready to use suspensions (Nano-X PK1245) to lab-produced PVD and sol?Cgel coatings. XRD analysis of the photocatalytic coatings showed that all the coatings consisted of nanocrystalline anatase, although the thickness and porosity varied considerably.

Results

The study showed that the reproducibility of the activity measurements was good. However, more importantly, the investigation showed that there is a good correlation between the activities determined by the different methods even though the characteristics of the photocatalytic coatings and the organic probe molecules varied considerably.

Conclusion

The overall findings of this work suggest that there is a good correlation between the investigated methods. These results are promising for the future work concerning standardization of methods for determination of the activity of photocatalytic films.  相似文献   

3.

Introduction

The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses.

Materials and methods

Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis. Band gap energy of synthesised nanocrystalline ZnO was calculated using diffuse reflectance spectroscopy (DRS). Different experimental parameters such as effects of pH, dye concentrations and mass of catalyst were standardised in order to achieve complete degradation of the dye molecules under solar light irradiation.

Results

The kinetics of oxidation of OG was also studied. The complete degradation of OG was evident after 90 min of irradiation at an initial pH of 6.86. The degradation of OG was confirmed by UV?CVisible spectrophotometer, high-pressure liquid chromatography, ESI-Mass and chemical oxygen demand analyses.

Conclusion

The adsorption of dye onto catalytic surface was analysed employing model equations such as Langmuir and Freundlich isotherms, and it was found that the Langmuir isotherm model best fitted the adsorption data. The solar photodegradation of OG followed pseudo-first-order kinetics. HPLC and ESI-Mass analyses of the degraded samples suggested that the dye molecules were readily degraded under solar irradiation with nanocrystalline ZnO.  相似文献   

4.

Introduction

This study of photocatalytic degradation of wastewater was carried out in alveolar cell ??-SiC foam-structured photocatalytic reactors working in a recirculation mode. The immobilization of TiO2 on ??-SiC foams was efficiently obtained through a sol?Cgel technique in acidic conditions.

Discussion

In order to optimize degradation yields obtained by the foam-structured prototype reactor for the photocatalytic water treatment, the operating conditions of the photoreactor have been investigated and the efficiency of the process was evaluated by measuring the photocatalytic degradation of Diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl-urea)) under UV irradiation. Kinetic studies were carried out by investigating the influence of different parameters controlling the reaction (TiO2 loading and ??-SiC foam cell size). The ageing of TiO2/??-SiC foam photocatalytic materials and the mineralization (TOC, Cl?, NO3? and NH4+) of Diuron were investigated.  相似文献   

5.

Purpose

The aim of this study was to prepare a highly active immobilized titania/silica photocatalyst and to test its performance in situ toward degradation of toluene as one of the major toxic indoor contaminants.

Methods

In this work, two different titania layers immobilized on Al sheets were synthesized via low temperature sol?Cgel method employing presynthesized highly active titania powders (Degussa P25 and Millennium PC500, mass ratio 1:1): (a) with a silica/titania binder and a protective layer and (b) without the binder. The photocatalysts were characterized by X-ray diffraction, nitrogen sorption measurements, scanning electron microscopy (SEM), infrared spectroscopy, and UV?Cvis diffuse reflectance spectroscopy (DRS). The in situ photocatalytic degradation of gaseous toluene was selected as a probe reaction to test photocatalytic activity and to verify the potential application of these materials for air remediation.

Results

Results show that nontransparent highly photocatalytically active coatings based on the silica/titania binder and homogeneously dispersed TiO2 powders were obtained on the Al sheets. The crystalline structure of titania was not altered upon addition of the binder, which also prevented inhomogeneous agglomeration of particles on the photocatalyst surface. The photoactivity results indicate that the adsorption properties and photocatalytic activity of immobilized photocatalysts with the silica/titania binder and an underlying protective layer were very effective and additionally, they exhibited considerably improved adhesion and uniformity.

Conclusion

We present a new highly photocatalytically active immobilized catalyst on a convenient metallic support, which has a potential application in an air cleaning device.  相似文献   

6.

Introduction

Efficient immobilization of TiO2 nanoparticles on the surface of Mg2Al-LDH nanosheets was performed by delamination/restacking process.

Experimental part

The structural and textural properties of as-prepared nanocomposite were deeply analyzed using different solid-state characterization techniques such as: X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopies, chemical analysis, X-ray photoelecton spectroscopy, N2 adsorption?Cdesorption, and electronic microscopy.

Results and discussion

The photocatalytic properties of immobilized TiO2 nanoparticles on Mg2Al were investigated using the photodegradation of two model pollutants: Orange II and 4-chlorophenol, and compared with pure colloidal TiO2 solution.

Conclusion

It appears that Orange II photodegradation was systematically faster and more efficient than 4-chlorophenol photodegradation regardless of the medium pH. Moreover under slightly basic conditions, even if the TiO2 photocatalytic efficiency decreases, photodegradation performed in presence of easily recovered TiO2/Mg2Al1.5 nanocomposite gives rise to comparable or better results than pure TiO2.  相似文献   

7.

Introduction

This study relates to use of zerovalent iron to generate hydroxyl free radicals and undergo subsequent oxidation to destroy 4-nonylphenol (NP) by mild process in aqueous solution and activation of oxygen gas (O2) at room temperature. This technology is based on a novel oxidative mechanism mediated by zerovalent iron rather than commonly used reduction mechanism.

Materials and methods

A laboratory scale device consisting of a 250?ml pyrex serum vials fixed to a Vortex agitator was used. Different amounts of zerovalent iron powder (ZVI; 1, 10, and 30?g/l) at pH?4 and room temperature with bubbling of oxygen gas were investigated.

Results and conclusion

Experiments showed an observed degradation rate k (obs) directly proportional to the amount of iron. 4-Nonylphenol degradation reactions demonstrated first-order kinetics with a half-life of about 10.5?±?0.5 and 3.5?±?0.2?min when experiments were conducted at [ZVI]?=?1 and 30?g/l respectively. Three analytical techniques were employed to monitor 4-nonylphenol degradation and mineralization: (1) spectrofluorimetry; (2) high-performance liquid chromatography; (3) total organic carbon meter (TOC meter). Results showed a complete disappearance of 4-nonylphenol after 20?min of contact with ZVI. The intermediate by-products of the reaction were not identified but the disappearance of NP was monitored by the three above-mentioned techniques.  相似文献   

8.

Introduction

In this work, we report in situ studies of UV photoelectrocatalytic discoloration of a dye (indigo carmine) by a TiO2 thin film in a microreactor to demonstrate the driving force of the applied electrode potential and the dye flow rate toward dye discoloration kinetics.

Methods

TiO2 65-nm-thick thin films were deposited by PVD magnetron sputtering technique on a conducting glass substrate of fluorinated tin oxide. A microreactor to measure the discoloration rate, the electrode potential, and the photocurrent in situ, was developed. The dye solutions, before and after measurements in the microreactor, were analyzed by Raman spectroscopy.

Results

The annealed TiO2 thin films had anatase structure with preferential orientation (101). The discoloration rate of the dye increased with the applied potential to TiO2 electrode. Further, acceleration of the photocatalytic reaction was achieved by utilizing dye flow recirculation to the microreactor. In both cases the photoelectrochemical/photocatalytic discoloration kinetics of the dye follows the Langmuir?CHinshelwood model, with first-order kinetics.

Conclusions

The feasibility of dye discoloration on TiO2 thin film electrodes, prepared by magnetron sputtering using a flow microreactor system, has been clearly demonstrated. The discoloration rate is enhanced by applying a positive potential (E AP) and/or increasing the flow rate. The fastest discoloration and shortest irradiation time (50?min) produced 80% discoloration with an external anodic potential of 0.931?V and a flow rate of 12.2?mL?min?1.  相似文献   

9.

Introduction

Titanium dioxide (TiO2) nanoparticle powders have been extensively studied to quickly photodegrade some organic pollutants; however, the effect of the particle size of TiO2 nanoparticle aggregates on degradation remains unclear because microscale aggregates form once the nanoparticle powders enter into water.

Methods

The degradation of azo dye by different particle sizes of TiO2 nanoparticle aggregates controlled by NaCl concentrations was investigated to evaluate the particle size effect. Removal reactions of reactive black 5 (RB5) with TiO2 nanoparticles followed pseudo-first-order kinetics.

Results

The increase of TiO2 dosage from 40 to 70?mg/L enhanced the degradation. At doses around 100?mg/L TiO2, degradation rates decreased which could be the result of poor UV light transmittance at high-particle concentrations. At average particle sizes of TiO2 nanopowders less than around 500?nm, the degradation rates increased with decreasing particle size. As the average particle size exceeded 500?nm, the degradation rates were not significantly changed.

Conclusions

For the complete degradation experiments, the mineralization rates of total organic carbon disappearance are generally following the RB5 decolorization kinetic trend. These findings can facilitate the application of TiO2 nanoparticles to the design of photodegradation treatments for wastewater.  相似文献   

10.

Introduction

TiO2 anatase nanoplates and hollow microspheres were fabricated by a solvothermal?Chydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals.

Methods

These different morphological structures of TiO2 anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal?Chydrothermal process.

Results and discussion

After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO2 anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO2 anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO2 anatase structures. All TiO2 anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference.

Conclusion

The fluoride free TiO2 anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO2 and NO3 ?.  相似文献   

11.

Background

The photocatalytic degradation of pyrene under UV (125?W Hg-Arc, 10.4?mW/cm2) irradiation of TiO2 aqueous suspension has been found to be highly improved with the dissolved transition metal ions like Cu2+, Fe3+, Ag+, and Au3+, etc. As the reduction potential of these metals lies below the conduction band (CB) position (?0.1?eV) of TiO2, the photoexcited electron transfer occurs more readily and reduces electron?Chole recombination rate. Therefore, it has a beneficial influence on the photocatalytic ability of TiO2 because of rapid Fermi energy equilibrium between the CB of TiO2 and its surface adsorbed metal ions.

Results and discussion

The Fermi level is referred to as the electrochemical potential and plays an important role in the band theory of solids. When metal and semiconductor are in contact, electron migration from photoirradiated semiconductor to the deposited metal occurs at the interface until two Fermi levels equilibrate and enhanced the photocatalytic activity of semiconductor photocatalyst. Ni2+ having more negative reduction potential (?0.25?eV) than the CB of TiO2 imparts negligible co-catalytic activity to TiO2 photoreaction. It also revealed that loading of Au3+ ions displayed higher degradation rate of pyrene than Au photodeposition. Furthermore, when the amount of dissolved Fe+3 and Au3+ ions gradually increases from 0.1 to 2?wt.%, the pyrene photodecomposition rate also become faster.  相似文献   

12.

Background, aim, scope

Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst.

Materials and methods

Ferrous sulfate (FeSO4·7H2O), sulfuric acid (36?N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50?cm and diameter 6?cm, were fabricated with PVC while one reactor was packed with MAC of mass 150?g and other without MAC served as control.

Results and discussion

The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89?kJ/mol, respectively. The thermodynamic parameters ??G, ??H, and ??S were calculated for the oxidation processes using Van??t Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV?Cvisible spectroscopy, and cyclic voltammetry.

Conclusions

The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time?C4?h, and H2O2/FeSO4·7H2O in the molar ratio of 2:1.  相似文献   

13.

Purpose

Biodegradation and biodecolorization of Drimarene blue K2RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system.

Method

Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH?5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500?mg?l?1) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24?C72?h. Total run time for reactor operation was 17?days.

Results

The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg?l?1 initial dye concentration and HRT of 24?h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC?CMS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K2RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye.

Conclusion

The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.  相似文献   

14.

Purpose

The sorption of sulfamethoxazole, a frequently detected pharmaceutical compound in the environment, onto walnut shells was evaluated.

Methods

The sorption proprieties of the raw sorbent were chemically modified and two additional samples were obtained, respectively HCl and NaOH treated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric (TG/DTG) techniques were applied to investigate the effect of the chemical treatments on the shell surface morphology and chemistry. Sorption experiments to investigate the pH effect on the process were carried out between pH?2 and 8.

Results

The chemical treatment did not substantially alter the structure of the sorbent (physical and textural characteristics) but modified the surface chemistry of the sorbent (acid?Cbase properties, point of zero charge??pHpzc). The solution pH influences both the sorbent??s surface charge and sulfamethoxazole speciation. The best removal efficiencies were obtained for lower pH values where the neutral and cationic sulfamethoxazole forms are present in the solution. Langmuir and Freundlich isotherms were applied to the experimental adsorption data for sulfamethoxazole sorption at pH?2, 4, and 7 onto raw walnut shell. No statistical difference was found between the two models except for the pH?2 experimental data to which the Freundlich model fitted better.

Conclusion

Sorption of sulfamethoxazole was found to be highly pH dependent in the entire pH range studied and for both raw and treated sorbent.  相似文献   

15.

Introduction

The degradation and mineralization of two triketone (TRK) herbicides, including sulcotrione and mesotrione, by the electro-Fenton process (electro-Fenton using Pt anode (EF-Pt), electro-Fenton with BDD anode (EF-BDD) and anodic oxidation with BDD anode) were investigated in acidic aqueous medium.

Methods

The reactivity of both herbicides toward hydroxyl radicals was found to depend on the electron-withdrawing effect of the aromatic chlorine or nitro substituents. The degradation of sulcotrione and mesotrione obeyed apparent first-order reaction kinetics, and their absolute rate constants with hydroxyl radicals at pH?3.0 were determined by the competitive kinetics method.

Results and discussion

The hydroxylation absolute rate constant (k abs) values of both TRK herbicides ranged from 8.20?×?108 (sulcotrione) to 1.01?×?109 (mesotrione) L?mol?1?s?1, whereas those of the TRK main cyclic or aromatic by-products, namely cyclohexane 1,3-dione , (2-chloro-4-methylsulphonyl) benzoic acid and 4-(methylsulphonyl)-2-nitrobenzoic acid, comprised between 5.90?×?108 and 3.29?×?109?L?mol?1?s?1. The efficiency of mineralization of aqueous solutions of both TRK herbicides was evaluated in terms of total organic carbon removal. Mineralization yields of about 97?C98% were reached in optimal conditions for a 6-h electro-Fenton treatment time.

Conclusions

The mineralization process steps involved the oxidative opening of the aromatic or cyclic TRK by-products, leading to the formation of short-chain carboxylic acids, and, then, of carbon dioxide and inorganic ions.  相似文献   

16.

Purpose

The objectives of this research are to identify the functional groups and determine corresponding pK a values of the acidic sites on dried brown algae Cystoseira barbata using FTIR and potentiometric titrations, and to investigate the biosorption ability of biomass towards divalent nickel, cadmium, and lead ions. Adsorption was studied as a function of solution pH and contact time, and experimental data were evaluated by the Langmuir isotherm model.

Methods

CaCl2 pretreatment was applied to the sorbent for enhancing the metal uptake capacity. The effect of solution pH on biosorption equilibrium was investigated in the pH range of 1.5?C5.0. Individual as well as competitive adsorption capacity of the sorbent were studied for metal cations and mixtures.

Results

The retention of the tested metal ions was mostly influenced from pH in the range of 1.5?C2.5, then stayed almost constant up to 5.0, while Ni(II) uptake showed the highest variation with pH. Potentiometric titrations were performed to find the number of strong and weak acidic groups and their acidity constants. The density of strong and weak acidic functional groups in the biomass were found to be 0.9 and 2.26?mmol/g, respectively. The FTIR spectra of the sorbent samples indicated various functionalities on the biomass surface including carboxyl, hydroxyl, and amino and sulphonate groups which are responsible for the binding of metal ions.

Conclusions

The capacity of the biomass for single metal ions (around 1?mmol/g) was increased to 1.3?mmol/g in competitive adsorption, Pb(II) showing the highest Langmuir intensity constant. Considering its extremely high abundance and low cost, C. barbata may be potentially important in metal ion removal from contaminated water and industrial effluents.  相似文献   

17.

Introduction

In this study, UV/Oxone/Co2+ oxidation process was applied to degradation of ofloxacin (OFL) in the presence of Co2+ as the catalytic and Oxone as the oxidant. The operation parameters including pH, temperature, dosages of reagents, and reaction time were studied in detail.

Results

The results showed that the optimum conditions for the UV/Oxone/Co2+ processes were determined as follows: temperature?=?25°C, pH?=?5.0, [Oxone]?=?0.6?mmol/L, [Oxone]/[Co2+]?=?1,000, and reaction time?=?60?min. Under these conditions, 100% of the OFL degraded. The kinetics was also studied, and degradation of OFL by the UV/Oxone/Co2+ process could be described by first-order kinetics.

Conclusions

Mineralization of the process was investigated by measuring the total organic carbon (TOC), and the TOC decreased by 87.0% after 60?min. This process could be used as a pretreatment method for wastewater containing ofloxacin.  相似文献   

18.

Background, aim

The aims of the NORMACAT project are: to develop tools and unbiased standardized methods to measure the performance and to validate the safety of new materials and systems integrating photocatalysis, to develop new photocatalytic media with higher efficiency and to give recommendations aimed at improving the tested materials and systems.

Method

To achieve this objective, it was necessary to design standardized test benches and protocols to assess photocatalytic efficiency of materials or systems used in the treatment of volatile organic compounds (VOCs) and odour under conditions close to applications. The tests are based on the validation of robust analytical methods at the parts per billion by volume level that not only follow the disappearance of the initial VOCs but also identify the secondary species and calculate the mineralization rates.

Results

The first results of inter-laboratory closed chamber tests, according to XP B44-013 AFNOR standard, are described. The photocatalytic degradation of mixtures of several defined pollutants under controlled conditions (temperature, relative humidity, initial concentration) was carried out in two independent laboratories with the same photocatalytic device and with various analytical procedures. Comparison of the degradation rate and of the mineralization efficiency allowed the determination of the clean air delivery rate in both cases. Formaldehyde was the only by-product detected during photocatalytic test under standardized experimental conditions. The concentration of transient formaldehyde varied according to the initial VOC concentration. Moreover the photocatalytic reaction rate of formaldehyde in mixture with other pollutants was analysed. It was concluded that formaldehyde concentration did not increase with time.

Conclusion??perspective

This type of experiment should allow the comparison of the performances of different photoreactors and of photocatalytic media under controlled and reproducible conditions against mixtures of pollutants including formaldehyde.  相似文献   

19.

Background

Polyvinyl alcohol (PVA) has been widely used as sizing agents in textile and manufacturing industry, and it is a refractory compound with low biodegradability.

Objective

The objective of this paper was to treat the PVA-containing wastewater using gamma irradiation as a pretreatment strategy to improve its biodegradability and to determine the roles of different kinds of radical species played during pretreatment.

Methods

Gamma radiation was carried out in a 60Cobalt source station, PVA concentration was analyzed by using a visible spectrophotometer and specific oxygen uptake rate (SOUR, milligram of O2 per gram of mixed liquor volatile suspended solids (MLVSS) per hour) was measured by a microrespirometer.

Results

The results showed that the biodegradability of PVA-containing wastewater with low initial concentration (e.g., 327.8?mg/l) could be improved greatly with increasing irradiation dose. However, PVA gel formation was observed at higher initial PVA concentration (e.g., 3,341.6?mg/l) and higher irradiation dose, which inhibited PVA degradation by aerobic microorganisms. However, the formed gel could be separated by microfiltration, which led to more than 90% total organic carbon (TOC) removal.

Conclusion

Ionizing radiation could be used as a pretreatment technology for PVA-containing wastewater, and its combination with biological process is feasible.  相似文献   

20.

Purpose

The study examines the effectiveness of red mud, blast furnace (BF) slag, and alum-derived water treatment sludge as immobilizing agents for excessive soluble P that had accumulated in three green waste-based composts.

Methods

The three wastes were applied at 0%, 5%, 10%, and 20% w/w to three different composts, all containing extremely high concentrations of extractable P, and were incubated for 60?days. Water-soluble P was measured regularly throughout the incubation period, and at the end, P extractable with resin, 0.05?M NaHCO3, and 0.005?M H2SO4 were also measured.

Results

In the water extracts, inorganic P made up more than 85% of the total P present. All three materials had the ability to adsorb P and thus lowered water-soluble P concentrations. Water treatment sludge was clearly the most effective material, and this was attributed to its amorphous nature (thus, large Brunauer?CEmmett?CTeller surface area) and its acid pH (6.8) compared with the alkaline pH (10?C11) of the other two materials. Water treatment sludge was also the most effective at lowering resin- and NaHCO3-extractable P. When H2SO4 was used as the extractant, BF slag tended to be the most effective material at lowering extractable P, followed by water treatment sludge, and red mud. That is, the P immobilized by water treatment sludge was extractable with acid but not with water, resin, or NaHCO3.

Conclusions

Water treatment sludge has the potential to be used as an effective immobilizing agent for soluble P in composts, and it should be trialed under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号