首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
Yang JK  Lee SM 《Chemosphere》2006,63(10):1677-1684
The removal efficiencies of Cr(VI) and HA, using a TiO(2)-mediated photocatalytic process, were investigated with variations in the pH, TiO(2) dosage and Cr(VI)/HA ratio. During the photocatalytic reaction, the total removal of Cr(VI) occurred through adsorption onto TiO(2), as well as its reduction to Cr(III). However, oxidation and adsorption were identified as important removal processes for the treatment of HA. Due to the anionic type adsorption onto TiO(2) and its acid-catalyzed photocatalytic reduction, the removal of Cr(VI) decreased with increasing pH, while that of HA increased with increasing pH. The TiO(2) dosage was also an important parameter for the removal of Cr(VI). As the TiO(2) dosage was increased to 2.5 g l(-1), the removal of Cr(VI) was continuously enhanced, but decreased at dosages above 3 g l(-1) due to the increased blockage of the incident UV light used for the photocatalytic reaction. The removal of Cr(VI) was greatly enhanced when the system contained both HA and Cr(VI) compared to Cr(VI) alone. Also, the removal of HA was greatly enhanced when the system contained both HA and Cr(VI) compared to HA alone. The removal of Cr(VI) was continuously enhanced as the HA concentration gradually increased; however, no further increase was observed above 20 mg l(-1) HA due to the increased absorption of the UV light. This result supports that the photocatalytic reaction, with illuminated TiO(2), could be applied to more effectively treat wastewater containing both Cr(VI) and HA than that containing a single species only.  相似文献   

2.
Li XZ  Fan CM  Sun YP 《Chemosphere》2002,48(4):453-460
This study aimed at improving the photocatalytic (PC) oxidation of humic acids (HA) in TiO2 suspensions by adding cationic ion such as calcium or magnesium. A set of tests was first conducted in the dark to study the adsorption of HA onto TiO2 in suspensions at different pH and calcium concentrations. The experiment demonstrated that the adsorption of HA onto the TiO2 particles was either pH-dependent or calcium strength-dependent due to electrostatic interaction and calcium ion bridging. The photodegradation of HA in the presence of UV irradiation was investigated as a function of pH and the concentration of calcium and magnesium ions. The results showed that the adsorption behavior between HA and TiO2 played a very important role during the PC oxidation process. The PC oxidation could be enhanced at neutral pH by increasing the cation strength. The kinetics of HA PC degradation in TiO2 suspensions with different initial concentrations was also studied using the Langmuir-Hinshelwood model.  相似文献   

3.
Xie B  Zhang H  Cai P  Qiu R  Xiong Y 《Chemosphere》2006,63(6):956-963
BiVO4 powder with monoclinic structure was prepared and used as a visible-light catalyst simultaneously for the photooxidation of phenol and the photoreduction of Cr(VI). The photocatalytic efficiency was found to be rather low for either single phenol solution or single Cr(VI) solution. However, the photocatalytic reduction of Cr(VI) and photocatalytic oxidation of phenol proceed more rapidly for the coexistence system of phenol and Cr(VI) than for the single process, showing synergetic effect between the oxidation and reduction reactions. For the simultaneous photocatalytic reduction-oxidation process, the first-order kinetic constant of phenol degradation was 0.0314 min-1, being about six times higher than that for the photocatalytic process of single phenol. This result reveals the feasibility of using Cr(VI) as the electron scavenger of mBiVO4-mediated photocatalytic process of phenol degradation, and gives us an enlightenment to employ other semiconductor with a better visible light response but with a more positive band edge to efficiently degrade organic pollutants. This is the first report for simultaneous photocatalytic reduction of Cr(VI) and removal of phenol under visible light irradiation using photocatalyst mBiVO4.  相似文献   

4.
The kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) in aqueous solutions at various pH, temperature, oxidant concentration and ionic strength levels was studied. The MTBE degradation was found to follow a pseudo-first-order decay model. The pseudo-first-order rate constants of MTBE degradation by persulfate (31.5 mM) at pH 7.0 and ionic strength 0.11 M are approximately 0.13 x 10(-4), 0.48 x 10(-4), 2.4 x 10(-4) and 5.8 x 10(-4) S(-1) at 20, 30, 40 and 50 degrees C, respectively. Under the above reaction conditions, the reaction has an activation energy of 24.5 +/- 1.6 kcal/ mol and is influenced by temperature, oxidant concentration, pH and ionic strength. Raising the reaction temperature and persulfate concentration may significantly accelerate the MTBE degradation. However, increasing both pH (over the range of 2.5-11) and ionic strength (over the range of 0.11-0.53 M) will decrease the reaction rate. Reaction intermediates including tert-butyl formate, tert-butyl alcohol, acetone and methyl acetate were observed. These intermediate compounds were also degraded by persulfate under the experimental conditions. Additionally, MTBE degradation by persulfate in a groundwater was much slower than in phosphate-buffer solutions, most likely due to the presence of bicarbonate ions (radical scavengers) in the groundwater.  相似文献   

5.
Wu TN 《Chemosphere》2007,69(2):271-278
This study utilized the electrocatalytic characteristics of nickel electrode to perform degradation of methyl tert-butyl ether (MTBE) in aqueous solution. Lab experiments were conducted in a spiltless bath type cell equipped with a nickel electrode as working electrode, a platinum wire as counter electrode, and an Ag/AgCl electrode as reference electrode. Effects of controlled potential, supporting electrolyte, and solution pH on the efficiency of MTBE removal were examined under the control of the constant-potential conditions. Experiment results showed that the optimum electrolytic condition was operated at 0.35 V in a 1M KOH electrolyte solution, and the initial 20 mgl(-1) MTBE was reduced by 73% within 180 min under the optimum control. As using 1M Na2SO4 and 1M KCl as electrolyte, the efficiency of MTBE removal dropped to 60% and 50% under the similar controls. Comparing with various pH controls, the strong basic condition is favorable for electrocatalytic oxidation of MTBE in the Ni-electrolytic system. The efficiency of MTBE removal showed a rising trend with increasing initial pH of the solution. The formation of a redox NiOOH/Ni(OH)2 layer on the anode surface, which was observed on the SEM image, can explain that nickel plays a mediator role on improving electrocatalytic oxidation of MTBE at 0.35 V in a strong basic condition. The by-products of MTBE degradation were identified as acetone and CO(2) by GC/MS, and the distributions of carbon atoms in acetone, CO2, and MTBE were found 22%, 51%, and 27% through the optimum control of electrochemical oxidation.  相似文献   

6.
Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst   总被引:1,自引:0,他引:1  
Ma YS  Chang CN  Chiang YP  Sung HF  Chao AC 《Chemosphere》2008,71(5):998-1004
Photocatalytic degradation of lignin was studied with the use of catalysts TiO(2) and Pt/TiO(2). The influence of several experimental parameters, i.e. pH, catalyst dosage and illumination on lignin degradation was investigated. The results showed that application of UV irradiation alone has almost no effect on the reduction of dissolved organic carbon (DOC) and American Dye Manufacture Institute value (ADMI). However, the addition of TiO(2) and Pt/TiO(2) reduced the original DOC (251 mg l(-1)) by more than 40% within 30 min of treatment and the reaction can be simulated with pseudo-first order kinetics. Rapid degradation of lignin was observed in acidic solution using either TiO(2) or Pt/TiO(2) as the catalyst compared to high pH cases. The content of Pt in the Pt/TiO(2) catalyst is 1%. In addition, too much catalyst addition has not increased the DOC and ADMI reduction proportionally. The investigation also indicated that the photocatalytic degradation rates could be enhanced 1-6 times faster after doping TiO(2) with Pt in different pH cases. A modified Nernst type model was adopted to simulate the decoloring process using TiO(2) and Pt/TiO(2) based on the profiles of oxidation reduction potential during the photocatalytic reaction. The developed equation can be used to predict the color removal efficiency of lignin wastewater by the photocatalytic process.  相似文献   

7.
The present work mainly deals with photocatalytic degradation of a herbicide, erioglaucine, in water in the presence of TiO2 nanoparticles (Degussa P-25) under ultraviolet (UV) light illumination (30 W). The degradation rate of erioglaucine was not so high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. We have studied the influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time and initial concentration of erioglaucine on the photodegradation efficiency of erioglaucine. A kinetic model is applied for the photocatalytic oxidation by the UV/TiO2 system. Experimental results indicated that the photocatalytic degradation process could be explained in terms of the Langmuir-Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K, and the second order kinetic rate constant, k, were 0.116 ppm-1 and 0.984 ppm min-1, respectively. In this work, we also compared the reactivity between the commercial TiO2 Degussa P-25 and a rutile TiO2. The photocatalytic activities of both photocatalysts were tested using the herbicide solution. We have noticed that photodegradation efficiency was different between both of them. The higher photoactivity of Degussa P-25 compared to that of rutile TiO2 for the photodegradation of erioglaucine may be due to higher hydroxyl content, higher surface area, nano-size and crystallinity of the Degussa P-25. Our results also showed that the UV/TiO2 process with Degussa P-25 as photocatalyst was appropriate as the effective treatment method for removal of erioglaucine from a real wastewater. The electrical energy consumption per order of magnitude for photocatalytic degradation of erioglaucine was lower with Degussa P-25 than in the presence of rutile TiO2.  相似文献   

8.
We examine how the processes of advection, dispersion, oxidation-reduction, and adsorption combine to affect the transport of chromium through columns packed with pyrolusite (beta-MnO2)-coated sand. We find that beta-MnO2 effectively oxidizes Cr(III) to Cr(VI) and that the extent of oxidation is sensitive to changes in pH, pore water velocity, and influent concentrations of Cr(III). Cr(III) oxidation rates, although initially high, decline well before the supply of beta-MnO2 is depleted, suggesting that a reaction product inhibits the conversion of Cr(III) to Cr(VI). Rate-limited reactions govern the weak adsorption of each chromium species, with Cr(III) adsorption varying directly with pH and Cr(VI) adsorption varying inversely with pH. The breakthrough data on chromium transport can be matched closely by calculations of a simple model that accounts for (1) advective-dispersive transport of Cr(III), Cr(VI), and dissolved oxygen, (2) first-order kinetics adsorption of the reduced and oxidized chromium species, and (3) nonlinear rate-limited oxidation of Cr(III) to Cr(VI). Our work supplements the limited database on the transport of redox-sensitive metals in porous media and provides a means for quantifying the coupled processes that contribute to this transport.  相似文献   

9.

The surface group characteristics of mango cultivar peels and seeds were evaluated by infrared spectra, PZC, and functional group composition. The adsorption/reduction of chromium (VI) in aqueous solutions was investigated by varying pH, contact time, initial Cr(VI) concentration, and adsorbent amount. The results show that both peel and seed powders of the mango cultivars showed significant adsorption/reduction capacity for Cr(VI) and that the desorption process obeys pseudo-second-order kinetics. Optimal adsorption occurred at pH 1.0, using a Cr(VI) concentration of 100 mg/L. On average, at pH 1.0, and a concentration of 3 g/L, the maximum adsorption/reduction capacity of Cr(VI) was 83% (peels 76%, seeds 90%). Of the mango powders tested, the most efficient were Tommy seed (100%) and Coite peel (98%) followed by Coite seed (96%) and Tommy peel powders (95%). The adsorption/reduction of Cr(VI) was complete (100%) by the mango seed, in comparison to the peel powders (97%) after 180 min. The data indicates that mango waste products, such as seed and peel powders, are both excellent candidates for the remediation of Cr(VI) from aqueous systems and due to the higher concentration of gallates and galloyl glucosides, the mango seed powders should be the powders of choice for future remediation projects.

  相似文献   

10.
Photocatalytic oxidation of pesticide rinsate   总被引:1,自引:0,他引:1  
Pesticide rinsate has been considered as one of the major threats for the environment. In this study, photocatalysts such as TiO2 and O3 were used to promote the efficiency of direct UV photolysis to prevent such wastewater pollution. Carbofuran (a carbamate pesticide) and mevinphos (an organophosphate pesticide) with a concentration of 100 mg/L were selected as the test pesticide rinsates. Parent pesticide compound, COD, and microtoxicity analysis were employed to investigate the effect of photocatalyst on the degradation efficiency of pesticide in rinsate. It was found that the photocatalytic oxidation process (UV/O3, UV/TiO2) showed much higher COD removal and microtoxicity reduction efficiency for pesticide rinsate than did direct UV photolysis under the imposed conditions, suggesting that photocatalytic oxidation processes such as UV/O3 and UV/TiO2 could be a better alternative to treat pesticide rinsate. In addition, it was noted that increasing the initial pH of mevinphos rinsate to a basic level was required to reach higher COD removal efficiency and positive microtoxicity reduction efficiency while it was not necessary for the treatment of carbofuran rinsate.  相似文献   

11.
Xu XR  Zhao ZY  Li XY  Gu JD 《Chemosphere》2004,55(1):73-79
Degradation of methyl tert-butyl ether (MTBE) in aqueous solution by Fenton's reagent (Fe2+ and H2O2) was investigated. Effects of reaction conditions on the oxidation efficiency of MTBE by Fenton's reagent were examined in batch experiments. Under optimum conditions, 15 mM H2O2, 2 mM Fe2+, pH 2.8 and room temperature, the initial 1 mM MTBE solution was reduced by 99% within 120 min. Results showed that MTBE was decomposed in a two-stage reaction. MTBE was first decomposed swiftly based on a Fe2+/H2O2 reaction and then decomposed somewhat less rapidly based on a Fe3+/H2O2 reaction. The detection of Fe2+ also supported the theory of the two-stage reaction for the oxidation of MTBE by Fenton's reagent. The dissolved oxygen in the solution decreased rapidly in the first stage reaction, but it showed a slow increase in the second stage with a zero-order kinetics. A reaction mechanism involving two different pathways for the decomposition of MTBE by Fenton's reagent was also proposed. Chemicals including tert-butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified to be the primary intermediates and by-products of the degradation processes.  相似文献   

12.
Methyl tert-butyl ether (MTBE) is one of the main additives in gasoline. Its degradation is known to be difficult in natural environments. In this study, significant MTBE degradation is demonstrated at a contaminated site in Leuna (eastern Germany). Since the extent of the plume appeared to be constant over the last 5 years, an extended study was performed to elucidate the degradation processes. Special attention was paid to the production, accumulation and degradation of metabolites and by-products. Groundwater samples from 105 monitoring wells were used to measure 20 different substances. During the degradation process, several intermediates such as tert-butyl alcohol (TBA), tert-butyl formate, formate and lactate were produced. However, the potentially carcinogenic by-product methacrylate was not detected in several hundred samples. At the Leuna site, MTBE degradation occurred under microaerobic conditions. In contrast to hydrocarbons and BTEX, there was no evidence for anaerobic MTBE degradation. Among the degradation products, TBA was found to be a useful intermediate to identify MTBE degradation, at least under microaerobic conditions. TBA accumulation was strongly correlated to MTBE degradation according to the kinetic properties of both degradation processes. Since maximum degradation rates (v(max)) and k(m) values were higher for MTBE (v(max)=2.3 mg/l/d and k(m)=3.2 mg/l) than for TBA (v(max)=1.35 mg/l/d and k(m)=0.05 mg/l), TBA significantly accumulated as an intermediate by-product. The field results were supported by bench scale model aquifer experiments.  相似文献   

13.
Wu CH 《Chemosphere》2004,57(7):601-608
This study examined degradation of azo dyes using photocatalytic oxidation (UV/semiconductor). The model substrates employed in this work were Procion Red MX-5B and Amaranth, while the photocatalysts were TiO2, ZnO, and SnO2. UV-Vis spectrum analysis demonstrated that the band gap energies of TiO2, ZnO, and SnO2 were 3.17, 2.92, and 4.13 eV, respectively. The band gap energy of SnO2 is insufficient to initiate photocatalytic reaction after UV irradiation (365 nm). The reaction rate constants fit a first-order reaction model and the reaction rate constant of Procion Red MX-5B for TiO2+SnO2 (0.31 h-1) is larger than that of TiO2 (0.24 h-1) and SnO2 at pH 10. The difference between the conduction bands of SnO2 and TiO2 enables the former to act as a sink for the photogenerated electrons. Most of the reaction rate constants had higher values at pH 10 than pH 7, and thus the OH attack could be assumed to represent the main reaction in this investigation. The quantities of sulfate and chloride ions released are below stoichiometry during the degradation. Owing to the sulfonate groups of Amaranth exceeding Procion Red MX-5B, Amaranth had larger electrostatic attraction than Procion Red MX-5B with the surface of ZnO, and also had higher adsorption percentage than Procion Red MX-5B on the surface of ZnO. The trend of adsorption is consistent with the reaction rate constant at pH 7, namely Amaranth>Procion Red MX-5B. The sulfate dissociation rate constant of Amaranth in UV/ZnO at pH 7 (0.49 h-1) approaches the overall rate constant (0.53 h-1); therefore, the first step involved in Amaranth can be suggested to the cleavage of the bonds of the C-S in Amaranth, causing sulfate ion formation.  相似文献   

14.
The aqueous photocatalytic degradation of cyanate (NCO(-)), which is a long-lived neurotoxin formed during the remediation of cyanide in industrial waste streams, was studied in the ferrate(VI)-UV-TiO2-NCO(-) system. Kinetics measurements of the photocatalytic reduction of ferrate(VI) were carried out as a function of [NCO(-)], [ferrate(VI)], [O(2)], light intensity (I(o)), and amount of TiO2 in suspensions at pH 9.0. The photocatalytic reduction rate of ferrate(VI) in the studied system can be expressed as -d[Fe(VI)]/dt=kI(o)(0.5) [NCO(-)] [TiO2]. The rate of photocatalytic oxidation of cyanate with ferrate(VI) was greater than the rate in the analogous system without ferrate(VI). The possibility of involvement of reactive ferrate(V) species for this enhancement was determined by studying the reactivity of ferrate(V) with NCO(-) in a homogeneous solution using a premix pulse radiolysis technique. The rate constant for the reaction of ferrate(V) and NCO(-) in alkaline medium was estimated to be (9.60+/-0.07) x 10(2) M(-1) s(-1), which is much slower than the ferrate(VI) self-decomposition reaction (k approximately 10(7) M(-1) s(-1)). An analysis of the kinetic data in the Fe(VI)-UV-TiO2-NCO(-) system suggests that ferrate(V) is not directly participating in the oxidation of cyanate. Possible reactions in the system are presented to explain results of ferrate(VI) reduction and oxidation of cyanate.  相似文献   

15.
Huang HH  Tseng DH  Juang LC 《Chemosphere》2008,71(2):398-405
The reaction sequence for the photocatalytic degradation of monochlorobenzene (MCB) in UV/TiO2 process, including substrate adsorption, degradation, and mineralization, was studied. The theoretical maximum quantity of MCB that could be adsorbed onto TiO2 surface in aqueous phase was 0.18+/-0.04 micromol m(-2) of TiO2. In accordance with the upper limit of the relative surface coverage of MCB molecules to surface hydroxyls of TiO2 was around 2.2%, the water molecules as the major adjacent species near TiO2 surface would compete with MCB molecules. Increasing the initial substrate concentration to an appropriate value or enhancing the affinity between the MCB and the TiO2 surface by adjusting the solution pH would promote the photocatalytic degradation. Experimental results revealed that the neutral medium was beneficial for the degradation of MCB. In comparison, the mineralization was most improved at acidic condition. Generally, 90% of the total organic carbon (TOC) was mineralized after 240 min illumination time in the examined pH range except solution pH 11. The suppressed mineralization of MCB at solution pH 11 was ascribed to the lack of adsorption. A simplified 2-step consecutive kinetic model was used to simulate the mineralization.  相似文献   

16.
Decolorizing of lignin wastewater using the photochemical UV/TiO2 process   总被引:1,自引:0,他引:1  
Chang CN  Ma YS  Fang GC  Chao AC  Tsai MC  Sung HF 《Chemosphere》2004,56(10):1011-1017
Studies on applying the photochemical UV/TiO2 oxidation process to treat the lignin-containing wastewater for dissolved organic carbon (DOC), color and reducing A254 (the absorption at the wavelength of 254 nm) have been carried out. The data obtained in this study demonstrate that the UV/TiO2 process is effective in oxidizing the lignin thus reducing the color and DOC of the wastewater treated. The combined UV/TiO2 treatment can achieve better removal of DOC and color than the UV treatment alone. Color removal, based on American Dye Manufacture Index (ADMI) measurement, is greater than 99% if the pH is maintained at 3.0 with the addition of 1 g l(-1) TiO2. When 10 g l(-1) TiO2 is applied, the oxidation reduction potential (ORP) value is reached to result in an 88% removal of both DOC and color. A model was developed based on the variation of ORP during the photochemical reaction to simulate the decoloring process. The proposed model can be used to predict the color removal efficiency of the UV/TiO2 process.  相似文献   

17.
以水体异味物质2-甲基异莰醇(2-methylisoborneol,2-MIB)为研究对象,在紫外光(λ<380 nm)照射下,探讨TiO2(P25)对2-MIB的光催化降解特性及光化学作用机理。结果表明,UV/TiO2光催化体系可以有效去除水体异味物质2-MIB,紫外光照射60 min,对2-MIB的降解率达95%。同时研究了光催化降解体系介质pH,共存腐殖酸(HA)和过硫酸钾(K2S2O8)对UV/TiO2光催化体系降解2-MIB的影响,发现低浓度HA([HA]≤0.5 mg/L)可以提高2-MIB降解速率,当HA浓度高于0.5 mg/L,2-MIB降解反应受到抑制;同时当加入电子受体K2S2O8后,降解体系中活性物种羟基自由基(.OH)明显增加,提高了TiO2对2-MIB的降解能力。利用苯甲酸荧光光度法和POD-DPD显色法跟踪测定降解过程中羟基自由基(·OH)和过氧化氢(H2O2)的变化,表明光催化反应涉及·OH机理。  相似文献   

18.
The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic conditions, there is hardly any evidence of substantial degradation in the absence of oxygen. The increasing availability of field data from CSIA will foster our understanding and may even allow the quantification of degradation of these recalcitrant compounds. Such information will help to elucidate the crucial factors of site-specific biogeochemical conditions that govern the capability of intrinsic oxygenate degradation.  相似文献   

19.
The adsorption of Cr(VI) and As(III) by amino-functionalized SBA-15 (NH2-SBA-15) from single and binary systems were investigated in this work. The effects of pH and temperature on the adsorption of NH2-SBA-15 were studied. Adsorption kinetics, isotherm model, and thermodynamics were studied to analyze the experimental data. pH 2 was the optimum condition for the adsorption of Cr(VI) and pH 4 for As(III) adsorption. Increasing temperature had a positive effect on the removal of both Cr(VI) and As(III). The Freundlich isotherm model can depict the adsorption process best. The pseudo-second-order kinetic model fitted well with the kinetic data of Cr(VI) and As(III) in the single-component system. In the binary system, the adsorption of As(III) by NH2-SBA-15 was slightly enhanced with the presence of Cr(VI); however, As(III) had no obvious effect on the removal of Cr(VI). Regeneration experiments indicated that 0.1 mol/L NaHCO3 was an efficient desorbent for the recovery of Cr(VI) and As(III) from NH2-SBA-15; the desorption rates for Cr(VI) and As(III) were 91.6 and 33.59 %, respectively. After five recycling cycles, the removal rates were 88 and 7 % for Cr(VI) and As(III) adsorption by NH2-SBA-15, respectively.  相似文献   

20.
Lin C  Lin KS 《Chemosphere》2007,66(10):1872-1877
TiO2/UV photocatalytic oxidation of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane), 1,2,3-trichlorobenzene and 4-chlorophenol were examined in aqueous solution in the presence of humic substances and organic mixtures to study if the degradation rates were affected. Both commercial and natural humic substances were observed to retard the photodegradation rates, with a greater effect from the natural humic substances. Acetonitrile and isopropanol also caused significant retardation of 4-chlorophenol photodegradation. The overall retardation can be attributed to the combination of light attenuation, inhibition and competition effects. Moreover, the TiO2/UV system favors the decomposition of compounds that have stronger adsorption onto the TiO2 surface. To engineer effective treatment facilities that use the TiO2/UV system for the treatment of toxic substances in wastewater, the methodology must allow for concerns about adventitious species which are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号