首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
低压膜过滤技术(包括微滤和超滤)在再生水生产领域正引起越来越广泛的关注。然而如何解决低压膜过滤过程中的膜有机污染问题始终是膜技术所面临的技术挑战。本研究采用醋酸纤维素酯微孔滤膜对二级出水溶解性有机物(EfOM)及其不同亲疏水性组分、蛋白模拟溶液、腐殖酸(HA)等进行恒流过滤实验。对不同有机物污染后的膜表面使用全反射傅立叶红外光谱(ATR-FTIR)和X射线电子能谱(XPS)进行表征。结果表明,相对于蛋白质和EfOM等,HA所造成的膜污染最少。ATR-FTIR的结果同时显示,以官能团而言,更多的氨化物(1535cm-1)、脂肪族物质(2860~2970cm-1)和氢氧根(3400cm-1)存在于膜表面。TMP/V数据比较结果表明,在EfOM各亲疏水性组分、蛋白质和HA的对比中,EfOM中的疏水碱性物质(HPO-B)对膜污染的贡献最大,而HA的膜污染贡献最小。UVA和荧光激发-发射光谱(FEEM)结果表明,HPO-B和蛋白质对醋酸纤维素酯膜的污染贡献较大。综合不同分析手段可以对不同有机物造成膜污染的潜能大小得出如下排序:HPO-B>蛋白质>HPO-A、HPI>HA。  相似文献   

2.

Purpose

The characteristics of organics in sulphite pulp mill effluent and in the receiving environment of effluent discharge were investigated to assess the basis for the persistence or attenuation of colour.

Methods

Characterization of organics was conducted through determination of SUVA, specific colour, and molecular weight distribution of organics using high performance size exclusion chromatography and by solid-state 13?C cross polarization (CP) NMR. The characteristics of organics from mill wastewater before and after secondary aerobic treatment, followed by lime treatment and from the receiving environment, an enclosed brackish lake were compared. Changes in the character of organics in lake water over a period of 14?years were studied in the context of changes in mill processing and climate impacts.

Results

High colour in mill effluent and in receiving waters correlated with high SUVA and specific colour levels, high molecular weight range and aromatic content. Conversely, lake waters with low colour had UV absorbing compounds of much lower molecular weight range and low relative abundance of aromatic compounds. Attenuation of colour and changes in the character of organics in the receiving environment coincided with increased concentrations of metal cations.

Conclusions

These increased concentrations appear to be due to the effects of climate change, lake management and their presence in mill effluent, with subsequent discharge to the lake. Attenuation of colour was found to be predominantly through removal of high molecular weight aromatic compounds where the removal processes could be through adsorption and co-precipitation with divalent metals, as well as through dilution processes.  相似文献   

3.
TiO2光催化-微滤膜分离深度净化亚甲基蓝印染废水   总被引:1,自引:1,他引:0  
高永  孔峰  程洁红  陈娴 《环境工程学报》2012,6(10):3585-3590
采用悬浮式TiO2光催化膜反应器深度净化纺织工业园区含亚甲基蓝印染废水经生物处理二级出水,利用中空纤维微滤膜进行催化剂截留分离,研究催化剂投加量、运行时间、溶解氧、搅拌方式对出水水质及膜通量的影响。结果表明:光催化会消耗体系溶解氧,鼓风曝气搅拌可同时为系统供氧,优于机械搅拌;该耦合体系的催化剂最佳投加量为1 g/L,经光催化氧化-膜组合工艺处理后水质优于GB 4287-1992《纺织染整工业污染物排放标准》的I级标准,符合建设部颁布的《生活杂用水水质标准》(CJ/T 48-1999)。  相似文献   

4.
通过FT-IR和GC-MS检测分析,表明了压裂废水中有机物主要以苯环结构为主的芳香类化合物和其他杂环化合物,苯环及杂环上的主要官能团包括酮、酯、羧酸、醛、酚、氨基等。同时,压裂废水中的粘度为常规水粘度的2~3倍。针对压裂废水高粘度和高COD污染水质特征,实验研究了压裂废水二氧化锰臭氧催化氧化处理特性以及粘度对处理效果的影响,研究结果表明,在粘度较高(2.2×10-3Pa·s)压裂废水中,投加的化学药剂很难扩散,羟基自由基·OH的利用效率较低,处理效果较差。通过投加过硫酸钾(5 g/L)降粘后,可在很大程度上提高二氧化锰臭氧催化氧化的处理效果。通过对压裂废水中有机物分子量分布、FT-IR分析以及GC-MS分析可知,二氧化锰臭氧催化氧化处理压裂废水是通过激发羟基自由基,破坏水中有机物极性和有机物化学构造,将复杂长链有机物转变为简单有机物,其出水COD可达到国家污水综合排放标准中的二级排放标准。  相似文献   

5.
采用Fenton氧化-序批式膜生物反应器(SBMBR)组合工艺处理干法腈纶废水。结果表明,在废水初始pH值为3.0,H2O2投加量为90.0 mmol/L,Fe2+投加量为20.0 mmol/L,反应时间为2.0 h的条件下,Fenton氧化预处理对腈纶生产废水的COD去除率达到47.0%以上,COD由1 091 mg/L降至560 mg/L,废水的BOD5/COD由0.32升至0.69,废水的可生化性得到显著提高。Fenton处理出水与丙烯腈废水等比例混合后,采用SBMBR进行生化处理,在水力停留时间为24 h,90 min缺氧/150 min好氧交替运行的条件下,COD、NH4+-N和TN的平均去除率分别为71.7%、97.2%和47.4%,碳源不足是限制TN去除效果的主要影响因素。在无外加碳源的条件下,组合工艺处理后出水COD和NH4+-N浓度分别为117 mg/L和1.7 mg/L,出水水质可以稳定达到国家一级排放标准(GB8978-1996)。  相似文献   

6.
The effects of formaldehyde on biofilm morphology and biomass activity were investigated in an ultracompact biofilm reactor (UCBR) for carbonaceous wastewater treatment. The wastewater contained a fixed amount of glucose (with a chemical oxygen demand concentration of 600 mg/L) and an increasing concentration of formaldehyde (ranging from 21.4 to 271.1 mg/L). An influent formaldehyde concentration higher than 75 mg/L could facilitate filamentous growth (on biofilm) control and lead to a higher biofilm density, which is desirable as it enhanced the UCBR performance stability. However, at an influent formaldehyde concentration higher than 214.4 mg/L, biomass production was inhibited and deteriorations of biofilm morphology and biomass activity were observed. This study showed that it was desirable to maintain an influent formaldehyde concentration lower than 202.2 mg/L, as this concentration could achieve a good biofilm morphology while not inhibiting its microbial activity.  相似文献   

7.
采用PVDF中空纤维微滤膜处理某纺织印染厂二级生化出水,研究了膜污染控制及清洗方法。结果表明,合理的膜通量是控制膜污染、保证膜寿命的关键,采用31 L/(m2.h)左右的通量有助于膜污染的控制。氢氧化钠与次氯酸钠可分别用于日常维护清洗与恢复清洗,通过循环正洗不仅能满足清洗要求,且药剂使用量也小于反洗方法,每吨产水清洗用碱费用仅0.06元。化学清洗后再水力正洗,能进一步提高清洗效果。  相似文献   

8.
The possibilities of application of a three-step system combining hybrid biological treatment followed by advanced UV/O3 oxidation with in situ generated O3 and membrane separation (ultrafiltration (UF) and nanofiltration (NF)) to treat and reuse the wastewater from an industrial laundry are presented. By the application of a hybrid moving bed biofilm reactor (HMBBR), the total organic carbon concentration was reduced for about 90 %. However, since the HMBBR effluent still contained organic contaminants as well as high concentrations of inorganic ions and exhibited significant turbidity (8.2 NTU), its further treatment before a possible reuse in the laundry was necessary. The UV/O3 pretreatment prior to UF was found to be an efficient method of the membrane fouling alleviation. During UF, the turbidity of wastewater was reduced below 0.3 NTU. To remove the inorganic salts, the UF permeate was further treated during NF. The NF permeate exhibited very low conductivity (27–75 μS/cm) and contained only small amounts of Ca2+ and Mg2+; thus ,it could be reused at any stage of the laundry process.  相似文献   

9.
根据微生物生长动力学特征以及膜分离特征,建立恒通量下运行的一体式膜生物反应器系统出水COD数学模型,提出膜生物反应器处理效率的数学模型。以实验及模型为基础,分别对进水COD浓度控制在300、400、500 mg/L附近时经过反应器后COD的去除效率进行了比较。通过公式计算的数据和实验数据分析可得:COD去除率的公式计算值与实验结果比较吻合,相对偏差仅为0.0223,为膜系统有机物的去除效果估算提供了基础,可为该类工艺的参数选择与优化提供参考。  相似文献   

10.
Abstract

Nitrogen transformations and their effect on aerobic suspended growth treatment of an industrial wastewater were studied in three parallel bench-scale reactors operated at 5 "C at mean cell residence times (MCRT) of 15, 30, and 60 days. In normal process wastewater, the bulk of influent nitrogen was in organic form, and the fraction transformed was almost totally incorporated into synthesized biomass. Assimilative control by heterotrophs maintained ammonianitrogen levels below permitted effluent levels, and nitrification was not significant. Although volatile suspended solids had a nitrogen content of only 5% to 8%, effective organics removal was maintained, and total organic carbon and filtered daily average five-day biochemical oxygen demand (BODS) were below permitted effluent levels. A marked improvement in settleability and lower effluent total suspended solids was achieved by adding ammonia-nitrogen to the wastewater in excess of stoichiometric growth requirements.

During a batch production cycle of a cationic chemical, the ratio of nitrogen to chemical oxygen demand and the fraction of the total influent nitrogen in soluble form increased in the wastewater. Reactor effluent ammonia levels increased to above permit levels at all three MCRTs during treatment of wastewater containing cationic production effluents. The magnitude of ammonia increase was greater for longer MCRTs, suggesting that synthesis of cell mass was not capable of assimilating the increased ammonia supply under these non-steady conditions. The experimental results suggest several potential strategies for operating the aerobic process at the treatment facility, including adding nitrogen to improve settleability and discontinuing these additions when wastewater contains a high ratio of nitrogen to chemical oxygen demand and an elevated soluble nitrogen fraction  相似文献   

11.
The rejection of emerging trace organics by a variety of commercial reverse osmosis (RO), nanofiltration (NF), and ultra-low-pressure RO (ULPRO) membranes was investigated using TFC-HR, NF-90, NF-200, TFC-SR2, and XLE spiral membrane elements (Koch Membrane Systems, Wilmington, Massachusetts) to simulate operational conditions for drinking-water treatment and wastewater reclamation. In general, the presence of effluent organic matter (EfOM) improved the rejection of ionic organics by tight NF and RO membranes, as compared to a type-II water matrix (adjusted by ionic strength and hardness), likely as a result of a decreased negatively charged membrane surface. Rejection of ionic pharmaceutical residues and pesticides exceeded 95% by NF-90, XLE, and TFC-HR membranes and was above 89% for the NF-200 membrane. Hydrophobic nonionic compounds, such as bromoform and chloroform, exhibited a high initial rejection, as a result of both hydrophobic-hydrophobic solute-membrane interactions and steric exclusion, but rejection decreased significantly after 10 hours of operation because of partitioning of solutes through the membranes. This resulted in a partial removal of disinfection byproducts by the RO membrane TFC-HR. In a type-II water matrix, the effect of increasing feed water recoveries on rejection of hydrophilic ionic and nonionic compounds was compound-dependent and not consistent for different membranes. The presence of EfOM, however, could neutralize the effect of hydrodynamic operating condition on rejection performance. The ULPRO and tight NF membranes were operated at lower feed pressure, as compared to the TFC-HR, and provided a product water quality similar to a conventional RO membrane, regarding trace organics of interest.  相似文献   

12.
研究有机碳源对SBBR厌氧氨氧化菌群等微生物的影响。采用16S rDNA序列与PCR-DGGE分析技术相结合的方法,对稳定运行的反应器内的活性污泥和生物膜样品,进行细菌多样性图谱分析,同时采用巢式PCR-DGGE技术对浮霉状菌属(Planctomycetes)细菌进行分析。结果表明,在有机碳源反应系统细菌条带数和多样性指数均高于无机系统,与活性污泥相比,生物膜表尤为明显。当进水不含有机碳源时,氨氧化细菌(ammonia oxidizing bacteria,AOB),厌氧氨氧化菌(anaerobic ammonia oxidizing bacteria,ANAMMOX)为优势功能菌;当进水含有机碳源时,系统中存在的AOB以亚硝化单胞菌(Nitrosomonas sp.)为优势菌群,同时存在反硝化菌,如索氏菌(Thauera sp.)以及厌氧氨氧化菌,它们共同作用完成N的去除。此外,与无机碳源系统相比,有机碳源的存在,有利于浮霉状菌的积累,但压缩了ANAMMOX的生存空间。本研究可为厌氧氨氧化工艺处理低C/N比有机废水提供了理论依据。  相似文献   

13.
This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min?1 flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m?2 h?1 bar?1. The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.  相似文献   

14.
Research was undertaken to analyze and verify a model that can be applied to activated sludge, integrated fixed-film activated sludge (IFAS), and moving-bed biofilm reactor (MBBR) systems. The model embeds a biofilm model into a multicell activated sludge model. The advantage of such a model is that it eliminates the need to run separate computations for a plant being retrofitted from activated sludge to IFAS or MBBR. The biofilm flux rates for organics, nutrients, and biomass can be computed by two methods-a semi-empirical model of the biofilm that is relatively simpler, or a diffusional model of the biofilm that is computationally intensive. Biofilm support media can be incorporated to the anoxic and aerobic cells, but not the anaerobic cells. The model can be run for steady-state and dynamic simulations. The model was able to predict the changes in nitrification and denitrification at both pilot- and full-scale facilities. The semi-empirical and diffusional models of the biofilm were both used to evaluate the biofilm flux rates for media at different locations. The biofilm diffusional model was used to compute the biofilm thickness and growth, substrate concentrations, volatile suspended solids (VSS) concentration, and fraction of nitrifiers in each layer inside the biofilm. Following calibration, both models provided similar effluent results for reactor mixed liquor VSS and mixed liquor suspended solids and for the effluent organics, nitrogen forms, and phosphorus concentrations. While the semi-empirical model was quicker to run, the diffusional model provided additional information on biofilm thickness, quantity of growth in the biofilm, and substrate profiles inside the biofilm.  相似文献   

15.
普通活性污泥膜生物反应器处理洗车废水的应用研究   总被引:6,自引:0,他引:6  
膜生物反应器是近年来发展起来的一种新型高效水处理设备。它将分离工程中的膜技术应用于好氧活性污泥处理系统,由膜组件取代传统生化处理技术中的二次沉淀池和砂滤池,由膜分离技术代替传统方法中的重力式沉淀泥水分离技术方式,具有简洁、高效等优点。采用普通活性污泥膜生物反应器工艺对天津某一洗车点洗车废水进行处理,并将处理出水回用于洗车。  相似文献   

16.
邹高龙 《环境工程学报》2014,8(6):2467-2472
针对城市生活污水,研究了两点进水倒置A2/O-MBR(平板膜)系统(以下简称系统)对COD、NH+4-N、TN、TP、出水SS影响。结果表明,该系统对COD、NH+4-N具有较高的去除率,出水符合GB18918-2002中一级A标准;当混合液回流比为200%时,系统出水TN浓度小于15 mg/L;正常排泥后,系统对TP的去除率达83%左右;平板膜破损会导致出水SS、COD会受到影响。膜对COD、TP、SS有直接截留作用,由于系统出水几乎没有固体损失,可以精确控制污泥龄,有利于世代周期较长的硝化菌和反硝化菌生长;系统中的污泥浓度可以提高至15 000 mg/L,此时,即使进水量提高0.5倍,出水水质仍保持良好。  相似文献   

17.
Chu L  Wang J 《Chemosphere》2011,83(1):63-68
This paper presents a comparison between two different materials used as carriers: inert polyurethane (PU) foam and biodegradable polymer polycaprolactone (PCL) particles for the removal of organics and nitrogen from wastewater with a low C/N ratio using moving bed biofilm reactors. The results, during a monitoring period of four months, showed that TOC and ammonium removal efficiency was higher in reactor 2 filled with PU carriers than in reactor 1 filled with PCL carriers (90% and 65% in the former, compared with 72% and 56% in the latter at an hydraulic retention time of 14 h). Reactor 1 showed good behavior in terms of total nitrogen removal as the biodegradable polymer was an effective substrate providing reducing power for denitrification. From three-dimensional excitation-emission matrix analysis, it was shown that the effluent from reactor 1 contained mainly protein-like and soluble microbial product-like substances.  相似文献   

18.
厌氧-好氧工艺处理制药废水的中试研究   总被引:3,自引:0,他引:3  
将由厌氧折流板反应器(ABR)、移动床生物膜反应器(MBBR)和膜生物反应器(MBR)组合而成的厌氧-好氧工艺用于处理制药废水的中试研究.试验结果表明,当原水SS平均值为1000 mg/L,COD为10 000 mg/L,NH3-N为500 mg/L时,出水浊度、COD和NH3-N分别为3 NTU、500 mg/L以及10 mg/L以下,去除率分别为98%、95%和98%以上.  相似文献   

19.
This study describes a novel wastewater treatment technology suitable for small remote northern communities. The technology is based on an enhanced biodegradation of organic carbon through a combination of anaerobic methanogenic and microbial electrochemical (bioelectrochemical) degradation processes leading to biomethane production. The microbial electrochemical degradation is achieved in a membraneless flow-through bioanode–biocathode setup operating at an applied voltage below the water electrolysis threshold. Laboratory wastewater treatment tests conducted through a broad range of mesophilic and psychrophilic temperatures (5–23 °C) using synthetic wastewater showed a biochemical oxygen demand (BOD5) removal efficiency of 90–97% and an effluent BOD5 concentration as low as 7 mg L?1. An electricity consumption of 0.6 kWh kg?1 of chemical oxygen demand (COD) removed was observed. Low energy consumption coupled with enhanced methane production led to a net positive energy balance in the bioelectrochemical treatment system.  相似文献   

20.
The operational performance of a submerged hollow fibre Membrane Bio-Reactor (MBR) for treatment of municipal wastewater on pilot scale was investigated. The experimental results indicated that the removal efficiency for SS, COD, NH4-N, turbidity, bacterium, iron (Fe2+) and Manganese (Mn2+) was 100%, 94.5%, 98.3%, 99.7%, lg6, 99%, 92.3%, respectively. The water quality of the effluent was quite good. The reclaimed water could be reused either directly or indirectly for municipal or industrial purposes. The MBR had a strong ability to resist loading shock and DO was a crucial factor to membrane fouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号