首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Extraction of mercury from groundwater using immobilized algae.   总被引:3,自引:0,他引:3  
Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency's (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contaminated groundwater in laboratory studies and pilot-scale field tests. Algal biomass was incorporated in a permeable polymeric matrix. The product, AlgaSORB, packed into adsorption columns, exhibited excellent flow characteristics, and functioned as a "biological" ion exchange resin. A sequence of eleven laboratory tests demonstrated the ability of this product to adsorb mercury from groundwater that contained high levels of total dissolved solids and hard water components. However, use of a single AlgaSORB preparation yielded nonrepeatable results with samples collected at different times of the year. The strategy of sequentially extracting the groundwater through two columns containing different preparations of AlgaSORB was developed and proved successful in laboratory and pilot-scale field tests. Field test results indicate that AlgaSORB could be economically competitive with ion exchange resins for removal of mercury, with the advantage that hardness and other dissolved solids do not appear to compete with heavy metals for binding capacity.  相似文献   

2.
The U.S. Environmental Protection Agency (EPA), in cooperation with E.I. DuPont de Nemours & Company, Inc. (DuPont) and the Oberlin Filter Company (Oberlin), undertook a field demonstration project to evaluate microfiltration technology for removal of zinc and suspended solids from wastewater. The microfiltration system utilized DuPont's Tyvek T-980 membrane filter media in conjunction with the Oberlin automatic pressure filter. The project was undertaken at the Palmerton Zinc Superfund site in April 1990 to verify the ability of the technology to remove dissolved zinc from the site's shallow groundwater. Pretreatment of the groundwater with lime for pH adjustment to precipitate dissolved zinc and other metals was included as part of the technology demonstration program. Analysis of the treated filtrate indicated that the system removed precipitated zinc and other suspended solids at an efficiency greater than 99.9 percent. The filter cake produced during the study passed both the Extraction Procedure (EP) Toxicity and the Toxicity Characteristic Leaching Procedure (TCLP) tests.  相似文献   

3.
A significant amount of contamination enters water bodies via stormwater runoff and, to reduce the amount of pollution, retention ponds are installed at many locations. While effective for treating suspended solids, retention ponds do not effectively remove dissolved constituents, such as polycyclic aromatic hydrocarbons (PAH). Previous laboratory studies demonstrates that aspen wood cuttings can be utilized to enhance the removal of dissolved contaminants. The objective of this pilot-scale field test was to determine if wood filters could effectively remove dissolved PAH from the runoff under field conditions. Four wood filter tests were conducted, lasting from 1 to 9 weeks, to determine the degree of PAH attenuation from the aqueous phase as a function of wood mass, residence times, and seasonable changes. The prototype wood filters removed on average between 18.5% and 35.6% (up to 66.5%) of the dissolved PAH contaminants. The PAH removal effectiveness of the wood was not affected by changes in water temperature or pH. The filter effectiveness increased with filter size and was highest in continuously submerged parts of the filter system. Also, heavier molecular weight PAH compounds (e.g. chrysene) were more effectively removed than lighter molecular weight compounds. Disassociation of weakly particle-bound PAH from the filter was identified as the most likely cause for a temporary drop of the wood filter's PAH load during intense storms. Simple filter design changes are likely to double the filter effectiveness and alleviate the disassociation problem.  相似文献   

4.
针对受低浓度氨氮污染的地下水,实验筛选组合了不同的反应介质,利用串联的多介质填充柱模拟渗透反应格栅,通过物理吸附及生物硝化-反硝化作用来实现氮的去除。结果表明,在进水氨氮浓度为10 mg/L、流速为0.5 m/d的条件下,模拟柱对氨氮的去除率达到98%以上,且不会出现亚硝酸盐及硝酸盐浓度的升高。水体经过释氧柱后溶解氧由2mg/L升高至10 mg/L以上,表明释氧材料可提供硝化细菌所需的好氧环境。好氧柱中填充易于生物挂膜的生物陶粒及对氨氮有较强吸附能力的沸石,二者联用通过生物硝化-物理吸附协同作用实现对氨氮的去除,其中生物作用实现的氨氮去除量占总去除量的50%左右。后续厌氧反应柱填充海绵铁除氧并利用松树皮颗粒作为碳源,创造反硝化菌生长条件,硝酸盐氮浓度可由10 mg/L降低至5 mg/L以下,实现对好氧反应阶段所产生的硝酸盐的去除,避免了地下水的二次污染。  相似文献   

5.
Investigation of gas production and entrapment in granular iron medium   总被引:1,自引:0,他引:1  
A method for measuring gas entrapment in granular iron (Fe0) was developed and used to estimate the impact of gas production on porosity loss during the treatment of a high NO3- groundwater (up to approximately 10 mM). Over the 400-d study period the trapped gas in laboratory columns was small, with a maximum measured at 1.3% pore volume. Low levels of dissolved H2(g) were measured (up to 0.07+/-0.02 M). Free moving gas bubbles were not observed. Thus, porosity loss, which was determined by tracer tests to be 25-30%, is not accounted for by residual gas trapped in the iron. The removal of aqueous species (i.e., NO3-, Ca, and carbonate alkalinity) indicates that mineral precipitation contributed more significantly to porosity loss than did the trapped gases. Using the stoichiometric reactions between Fe0 and NO3-, an average corrosion rate of 1.7 mmol kg-1 d-1 was derived for the test granular iron. This rate is 10 times greater than Fe0 oxidation by H2O alone, based on H2 gas production. NO3- ion rather than H2O was the major oxidant in the groundwater in the absence of molecular O2. The N-mass balance [e.g., N2g and NH4+ and NO3-] suggests that abiotic reduction of NO3- dominated at the start of Fe0 treatment, whereas N2 production became more important once the microbial activity began. These laboratory results closely predict N2 gas production in a separated large column experiment that was operated for approximately 2 yr in the field, where a maximum of approximately 600 ml d-1 gas volumes was detected, of which 99.5% (v/v) was N2. We conclude that NO3- suppressed the production of H2(g) by competing with water for Fe0 oxidation, especially at the beginning of water treatment when Fe0 is highly reactive. Depends on the groundwater composition, gas venting may be necessary in maintaining PRB performance in the field.  相似文献   

6.
Twenty-eight bacterial and Br transport experiments were performed in the field to determine the effects of physical and chemical heterogeneity of the aquifer sediment. The experiments were performed using groundwater from two field locations to examine the effects of groundwater chemistry on transport. Groundwater was extracted from multilevel samplers and pumped through 7-cm-long columns of intact sediment or repacked sieved and coated or uncoated sediment from the underlying aquifer. Two bacterial strains, Comamonas sp. DA001 and Paenibacillus polymyxa FER-02, were injected along with Br into the influent end of columns to examine the effect of cell morphology and cell surface properties on bacterial transport. The effects of column sediment grain size and mineral coatings coupled with groundwater geochemistry were also investigated. Significant irreversible attachment of DA001 was observed in the Fe oxyhydroxide-coated columns, but only in the suboxic groundwater where the concentrations of dissolved organic carbon (DOC) were ca. 1 ppm. In the oxic groundwater where DOC was ca. 8 ppm, little attachment of DA001 to the Fe oxyhydroxide-coated columns was observed. This indicates that DOC can significantly reduce bacterial attachment due electrostatic interactions. The larger and more negatively charged FER-02 displayed increasing attachment with decreasing grain size regardless of DOC concentration, and modeling of FER-02 attachment revealed that the presence of Fe and Al coatings on the sediment also promoted attachment. Finally, the presence of Al coatings and Al containing minerals appeared to significantly retard the Br tracer regardless of the concentration of DOC. These findings suggest that DOC in shallow oxic groundwater aquifers can significantly enhance the transport of bacteria by reducing attachment to Fe, Mn and Al oxyhydroxides. This effect appears to be profound for weakly and strongly charged hydrophilic bacteria and may contribute to differences in observations between laboratory experiments versus field-scale investigations particularly if the groundwater pH remains subneutral and Fe oxyhydroxide phases exist. These observation validate the novel approach taken in the experiments outlined here of performing laboratory-scale experiments on site to facilitate the use of fresh groundwater and thus be more representative of in situ groundwater conditions.  相似文献   

7.
Osako M  Kim YJ  Lee DH 《Chemosphere》2002,48(8):849-856
A field investigation by boring was carried out in a landfill site primarily with municipal solid waste incineration residue. From the collected core samples, vertical profiles of homologous content of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) in the landfill layer were traced and the behavior of PCDDs/PCDFs was examined. In addition, a pilot-scale study was conducted on the PCDDs/PCDFs leached from incineration fly ash and the treated one using large landfill simulation columns (lysimeters) and the leaching behavior of PCDDs/PCDFs was examined. As a result, it was found that the coexistence of dissolved coloring constituents (DCCs), which might be composed of constituents like dissolved humic matters having strong affinity for hydrophobic organic pollutants, could enhance the leachability of PCDDs/PCDFs, thus contributing to the vertical movement and leaching behavior of PCDDs/PCDFs in the landfill layers of the incineration residue. Moreover, it is highly probable that DCCs derive from the unburned carbon in the bottom ash mixed and buried with the fly ash containing a high content of PCDDs/PCDFs.  相似文献   

8.
King JK  Harmon SM  Fu TT  Gladden JB 《Chemosphere》2002,46(6):859-870
A pilot-scale model was constructed to determine if a wetland treatment system (WTS) could effectively remove low-level mercury from an outfall located at the Department of Energy's Savannah River Site. Site-specific hydrosoil was planted with giant bulrush, Scirpus californicus, and surface amended with gypsum (CaSO4) prior to investigating the biogeochemical dynamics of sediment-based sulfur and mercury speciation. On average, the pilot WTS decreased total mercury concentrations in the outfall stream by 50%. Transformation of mercury to a more "bioavailable" species, methylmercury, was also observed in the wetland treatment system. Methylmercury formation in the wetland was ascertained with respect to sediment biogeochemistry and S. californicus influences. Differences in sulfate-reduction rates (SRRs) were observed between mesocosms that received additional decomposing Scirpus matter and mesocosms that were permitted growth of the submerged macrophyte, Potamogeton pusillus. Relative abundance measurements of sulfate-reducing bacteria (SRB) as characterized using oligonucleotide probes were also noticeably different between the two mesocosms. A positive correlation between increased sulfide, dissolved total mercury, and dissolved methylmercury concentrations was also observed in porewater. The data suggest that soluble mercury-sulfide complexes were formed and contributed, in part, to a slight increase in mercury solubility. Observed increases in methylmercury concentration also suggest that soluble mercury-sulfide complexes represent a significant source of mercury that is "available" for methylation. Finally, a volunteer macrophyte, Potamogeton pusillus, is implicated as having contributed additional suspended particulate matter in surface water that subsequently reduced the pool of dissolved mercury while also providing an environment suitable for demethylation.  相似文献   

9.
Laboratory and modeling studies were conducted to assess the potential performance of a permeable reactive barrier constructed of a natural zeolite material at the West Valley Demonstration Project in western New York State. The results of laboratory column tests indicated that the barrier material would be effective at removing strontium from groundwater under natural gradient conditions. Two one-dimensional contaminant transport models were developed to interpret the data. A single-solute retardation factor model provided good agreement with the column test data, but time-consuming extraction and analysis of the zeolite material was required to parameterize the model. A preliminary six-solute model was also developed based on the assumption of competitive cation exchange as the primary removal mechanism. Both models yielded similar predictions of the long-term performance of the barrier, but the cation exchange model predicted higher effluent concentrations during the first 1000 pore volumes of operation. The cation exchange framework has several advantages, including the ability to calibrate the model using only data from column effluent samples, and the ability to account for site-specific differences in the groundwater cation composition. However, additional laboratory work is needed to develop a suitably robust model.  相似文献   

10.
Encapsulation technology is being investigated as a method for controlling pH in situ at contaminated groundwater sites where pH may limit remediation of organic contaminants. This study examined the effectiveness of using KH2PO4 buffer encapsulated in a pH-sensitive coating to neutralize pH in laboratory sand columns (1.5-1) under a simulated groundwater flow rate and characterized the pattern of capsule release in the flow-through system. Denitrification was used in the columns to increase the pH of the pore water. Each of three columns was equipped with three miniature mesh wells to allow contact of the buffer with column pore water, but capsules (15 g) were inserted into only one column (amended). The two other columns served as amendment (no buffer) and abiotic (no denitrification) controls. Oxidation-reduction potential, dissolved organic and inorganic carbon, NH4+, NO3- +NO2-, PO(4)3-, and pH were measured in the influent, two side ports, and effluent of the columns over time. Near complete conversion of 80 mg N/1 of nitrate and 152 mg/l of ethanol per day resulted in a mean pH increase from 6.2 to 8.2 in the amendment control column. The amended column maintained the target pH of 7.0 +/- 0.2 for 4 weeks until the capsules began to be depleted, after which time the pH slowly started to increase. The capsules exhibited pulses of buffer release, and were effectively dissolved after 7.5 weeks of operation. Base-neutralizing capacity contributed by the encapsulated buffer over the entire study period, calculated as cation equivalents, was 120 mM compared to 8 mM without buffer. This study demonstrates the potential for this technology to mediate pH changes and provides the framework for future studies in the laboratory and in the field, in which pH is controlled in order to enhance organic contaminant remediation by pH-sensitive systems.  相似文献   

11.
The aim of this study is to evaluate the groundwater geochemistry in Burg Elarab area as an example of a calcareous eolianite aquifer that is covered with saline soil in a semiarid climatic condition. To conduct this study, 37 groundwater samples were taped from the production wells in addition to two surface water samples from Mallahet Mariut Lake and Bahig Canal. To elucidate the origin of dissolved ions and the geochemical processes influencing this groundwater, combinations of geomorphological, pedological, hydrogeological, hydrochemical, and statistical approaches were considered. Results suggest that the groundwater flows from both sides of the plain to the central area. Soil type and salinity and the intruded brackish lake water are the main factors controlling the groundwater chemistry. Chemically, the groundwater samples were classified into three groups. Group 1 samples have higher salinity range and characterize the area close to Mallahet Mariut and are influenced by cation exchange processes. Group 2 samples have an intermediate salinity range, occupy most of the plain area, and receive water from direct infiltrations and mixing between different recharge sources. Group 3 samples have low salinity range and limited areal extent and characterize the groundwater flowing from the Mariut Tableland. Reverse ion exchange is the predominant process in the latter group. Calcite precipitation is a general phenomenon characterizing all the groundwater types in the study area.  相似文献   

12.
ABSTRACT

The Electric Power Research Institute (EPRI) is conducting research to investigate mercury removal in utility flue gas using sorbents. Bench-scale and pilot-scale tests have been conducted to determine the abilities of different sor-bents to remove mercury in simulated and actual flue gas streams. Bench-scale tests have investigated the effects of various sorbent and flue gas parameters on sorbent performance. These data are being used to develop a theoretical model for predicting mercury removal by sorbents at different conditions. This paper describes the results of parametric bench-scale tests investigating the removal of mercuric chloride and elemental mercury by activated carbon.

Results obtained to date indicate that the adsorption capacity of a given sorbent is dependent on many factors, including the type of mercury being adsorbed, flue gas composition, and adsorption temperature. These data provide insight into potential mercury adsorption mechanisms and suggest that the removal of mercury involves both physical and chemical mechanisms. Understanding these effects is important since the performance of a given sorbent could vary significantly from site to site depending on the coal- or gas-matrix composition.  相似文献   

13.
Natural colloids in groundwater could facilitate radionuclide transport, provided the colloids are mobile, are present in sufficient concentrations and can adsorb radionuclides. This paper describes the results of a laboratory migration study carried out with combinations of radionuclides and natural colloids within a fracture in a large granite block to experimentally determine the impact of colloids on radionuclide transport. The 85Sr used in this study is an example of a moderately sorbing radionuclide, while the 241Am is typical of a strongly sorbed radionuclide with very low solubility. The natural colloids used in this study were isolated from granite groundwater from Atomic Energy of Canada (AECL) Underground Research Laboratory (URL), and consisted of mostly 1-10 nm organic colloids, along with lesser amounts of 10-450 nm colloids (organics and aluminosilicates). The measured coefficients for radionuclide sorption onto these colloids were between 3 x 10(2) and 1 x 10(3) ml/g for 85Sr, and between 7 x 10(4) and 7 x 10(5) mg/l for 241Am. The 85Sr sorption on the natural colloids appeared to be reversible. Migration experiments in the granite block were carried out by establishing a flow field between two boreholes (out of a total of nine) intersecting a main horizontal fracture. These experiments showed that dissolved 85Sr behaved as a moderately sorbing tracer, while dissolved 241Am was completely adsorbed by the fracture surfaces and showed no evidence of transport. However, when natural colloids were injected together with dissolved 241Am, a small amount of 241Am transport was observed, demonstrating the ability of natural colloids to facilitate the transport of radionuclides with low solubility. Natural colloids had only a minor effect on the transport of 85Sr. In a separate experiment to test the effect of higher colloid concentrations on 85Sr migration, synthetic colloids were produced from Avonlea bentonite. The introduction of a relatively high concentration of bentonite colloids actually reduced 85Sr transport because, compared to natural colloids, the bentonite colloids were less mobile and they sorbed 85Sr more strongly.  相似文献   

14.
The purpose of this work is to assess the effectiveness of two grass covers (buffer zone and grass-covered inter-row), to reduce pesticide leaching, and subsequently to preserve groundwater quality. Lower amounts of pesticides leached through grass-cover soil columns (2.7-24.3% of the initial amount) than the bare soil columns (8.0-55.1%), in correspondence with their sorption coefficients. Diuron was recovered in higher amounts in leachates (8.9-32.2%) than tebuconazole (2.7-12.9%), in agreement with their sorption coefficients. However, despite having a sorption coefficient similar to that of diuron, more procymidone was recovered in the leachates (10.2-55.1%), probably due to its facilitated transport by dissolved organic matter. Thus even in this very permeable soil, higher organic matter contents associated with grass-cover reduce the amount of pesticide leaching and limit the risk of groundwater contamination by the pesticides. The results of diuron and tebuconazole transfer through undisturbed buffer zone soil columns are in agreement with field observations on the buffer zone.  相似文献   

15.
The appropriate prediction of the fate of the contaminant is an essential step when evaluating the risk of severe groundwater pollutions-in particular in the context of natural attenuation. We numerically study the reactive transport of phenanthrene at the field scale in a multilayer soil profile based on experimental data. The effect of carrier facilitation by dissolved organic carbon is emphasized and incorporated in the model. Previously published simulations are restricted to the saturated zone and/or to homogeneous soil columns at the laboratory scale. A numerical flow and transport model is extended and applied to understand and quantify the relevant processes in the case of a strongly sorbing hydrophobic organic compound that is subject to carrier facilitation in the unsaturated zone. The contaminant migration is investigated on long- and short-term time scales and compared to predictions without carrier facilitation. The simulations demonstrate the importance of carrier facilitation and suggest strongly to take this aspect into account. By carrier facilitation breakthrough times at the groundwater level decreased from 500 to approximately 8 years and concentration peaks increased by two orders of magnitude in the long-term simulation assuming a temporary spill in an initially unpolluted soil with a non-sorbing carrier.  相似文献   

16.
Assessing sorbents for mercury control in coal-combustion flue gas   总被引:1,自引:0,他引:1  
Sorbent injection for Hg control is one of the most promising technologies for reducing Hg emissions from power-generation facilities, particularly units that do not require wet scrubbers for SO2 control. Since 1992, EPRI has been assessing the performance of Hg sorbents in pilot-scale systems installed at full-scale facilities. The initial tests were conducted on a 5,000-acfm (142-m3/min) pilot baghouse. Screening potential sorbents at this scale required substantial resources for installation and operation and did not provide an opportunity to characterize sorbents over a wide temperature range. Data collected in the laboratory and in field tests indicate that sorbents are affected by flue gas composition and temperature. Tests carried out in actual flue gas at a number of power plants also have shown that sorbent performance can be site-specific. In addition, data collected at a field site often are different from data collected  相似文献   

17.
The environmental fate and effects of pioglitazone prescribed for the treatment of type 2 diabetes were evaluated in an environmental risk assessment following the European Medicines Agency (EMA) "Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use"; EMEA/CHMP/SWP/4447/00. A predicted environment concentration (PEC) for surface water was estimated at 0.023μgL(-1), (action limit of 0.01μgL(-1)) triggering a comprehensive battery of laboratory evaluations. Pioglitazone and its major metabolites were determined not to significantly adsorb to sewage solids, were not persistent in the aquatic environment, did not bioaccumulate and were non-toxic to aquatic organisms. Pioglitazone does not pose an unacceptable risk to groundwater supplies, with concentrations not anticipated to be a risk to aquatic organisms or human drinking water supplies. Pioglitazone does not pose a risk of secondary poisoning.  相似文献   

18.
Geochemical and stable carbon isotope data from closely spaced vertical intervals in a hydrocarbon-impacted aquifer were used to assess the relationship between biodegradation, mineral weathering, and enhanced bulk conductivity zones. The results show that depth zones of enhanced bulk conductivity in the contaminated aquifer had higher total dissolved solids (TDS) compared to background groundwater. The higher TDS in contaminated groundwater were due to elevated ion concentrations from enhanced mineral weathering. Depth intervals with higher concentrations of major cations overlapped with zones with higher total petroleum hydrocarbons, which were the same zones where reduction of nitrate, iron, manganese, sulfate, and methanogenesis was occurring. Hence, the zones of higher bulk conductivity may be explained by mineral weathering related to hydrocarbon biodegradation. Our results suggest that biodegradation of hydrocarbons may impart changes to the aquifer geochemistry that can be indirectly observed using geophysical techniques. We therefore argue for inclusion of geophysical investigations as part of natural attenuation assessment programs.  相似文献   

19.
Large-scale column experiments were undertaken to evaluate the potential of in situ polymer mats to deliver oxygen into groundwater to induce biodegradation of the pesticides atrazine, terbutryn and fenamiphos contaminating groundwater in Perth, Western Australia. The polymer mats, composed of woven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2-m-long flow-through soil columns. The polymer mats proved efficient in delivering dissolved oxygen to anaerobic groundwater. Dissolved oxygen concentrations increased from <0.2 mg l(-1) to approximately 4 mg l(-1). Degradation rates of atrazine in oxygenated groundwater were relatively high with a zero-order rate of 240-380 microg l(-1) or a first-order half-life of 0.35 days. Amendment with an additional carbon source showed no significant improvement in biodegradation rates, suggesting that organic carbon was not limiting biodegradation. Atrazine degradation rates estimated in the column experiments were similar to rates determined in laboratory culture experiments, using pure cultures of atrazine-mineralising bacteria. No significant degradation of terbutryn or fenamiphos was observed under the experimental conditions within the time frames of the study. Results from these experiments indicate that remediation of atrazine in a contaminated aquifer may be achievable by delivery of oxygen using an in situ polymer mat system.  相似文献   

20.
Accumulation of nitrite in denitrifying barriers when phosphate is limiting   总被引:2,自引:0,他引:2  
Permeable in situ denitrifying barriers can remove nitrate from groundwater. Barriers may be constructed by filling an excavated area with a porous mixture of sand, fine gravel, and substrate or by the injection of a nonaqueous phase substrate into an aquifer. The substrate stimulates the development of a denitrifying microbial community by providing an electron donor. The objective of this study was to determine the ability of denitrifying barriers to function under low-phosphate conditions. Sand columns injected with a soybean oil emulsion were used as laboratory models of denitrifying barriers. When a natural groundwater containing 17 mg l(-1) nitrate-N and 0.009 mg l(-1) phosphate-P was pumped through the columns, only a small amount of nitrate was removed from the water and, in some effluent fractions, 52% to 88% of the influent nitrate had converted to nitrite. Nitrite also accumulated when the phosphate concentration of the groundwater was increased to 0.040 or 0.080 mg l(-1) phosphate-P. Only when a 0.160 mg l(-1) phosphate-P supplement was added to the groundwater was there a loss of nitrate without a large accumulation of nitrite. The addition of solid calcium phosphate or rock phosphate to the sand columns was found to provide adequate phosphate for denitrification in short-term studies. These studies point out the need to ensure that adequate phosphate is present in denitrifying barriers especially when such barriers are used beneath phosphate-binding soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号