首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The effects of wet-deposited nitrogen on soil acidification and the health of Norway spruce were investigated in a pot experiment using an open-air spray/drip system. Nitrogen was applied as ammonium ((NH(4))(2)SO(4)) or nitrate (HNO(3)/NaNO(3)) in simulated rain to either the soil or the foliage for a period of two years five months. Symptoms of forest decline were not reproduced. Adverse effects relating to soil acidification and N saturation were observed and depended on the chemical form of N. The plant-soil system absorbed most of the soil-applied NH(+)(4) at doses of up to 65 kgN ha(-1) year(-1) but only 54% at a dose of 125 kgN ha(-1) year(-1). About 60% of soil-applied NO(-)(3) was absorbed in all treatments. Ammonium treatments acidified the soil, increased base cation leaching, and mobilised acidic cations. Nitrification was not the major source of acidity, however. Nitrate inputs increased soil pH. Critical loads calculated using current criteria were 60-120 and 30-60 kgN ha(-1) year(-1) for ammonium and nitrate, respectively. Ammonium is more likely to damage forest ecosystems, however, illustrating the need for care in the definition of critical loads.  相似文献   

2.
A field study near the copper smelter of a large industrial complex examined air pollution effects on vegetation and soil parameters in Cama?ari (northeast Brazil). Close to the smelter, soil pH-value was lower and total acidity as well as organic carbon contents were higher compared with a site far from the source and two reference sites. The acidification of top soil particularly and the drastically enhanced plant-available copper concentrations were caused by atmospheric deposition. High sulphur and copper deposition significantly reduced microbial biomass and altered functional diversity of soil microorganisms (arylsulphatase and xylanase). Large accumulations of sulphur, arsenic and copper were detected in mango leaves (Mangifera indica) growing downwind from the smelter suggesting potential food chain-mediated risk.  相似文献   

3.
Leifeld J  Fuhrer J 《Ambio》2010,39(8):585-599
Organic farming is believed to improve soil fertility by enhancing soil organic matter (SOM) contents. An important co-benefit would be the sequestration of carbon from atmospheric CO2. Such a positive effect has been suggested based on data from field experiments though many studies were not designed to address the issue of carbon sequestration. The aim of our study was to examine published data in order to identify possible flaws such as missing a proper baseline, carbon mass measurements, or lack of a clear distinction between conventional and organic farming practices, thereby attributing effects of specific practices to organic farming, which are not uniquely organic. A total of 68 data sets were analyzed from 32 peer-reviewed publications aiming to compare conventional with organic farming. The analysis revealed that after conversion, soil C content (SOC) in organic systems increased annually by 2.2% on average, whereas in conventional systems SOC did not change significantly. The majority of publications reported SOC concentrations rather than amounts thus neglecting possible changes in soil bulk density. 34 out of 68 data sets missed a true control with well-defined starting conditions. In 37 out of 50 cases, the amount of organic fertilizer in the organic system exceeded that applied in the compared conventional system, and in half of the cases crop rotations differed between systems. In the few studies where crop rotation and organic fertilization were comparable in both systems no consistent difference in SOC was found. From this data analysis, we conclude that the claim for beneficial effects of organic farming on SOC is premature and that reported advantages of organic farming for SOC are largely determined by higher and often disproportionate application of organic fertilizer compared to conventional farming.  相似文献   

4.
In order to examine the input of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs) from various airborne sources to environmental sinks, the atmospheric deposition of congener-specific PCDDs/PCDFs was investigated. Homologue and congener profiles of atmospheric depositions were compared with those of sources and environmental sinks to identify the relationship among atmospheric depositions, sources, and environmental sinks. Moreover, factor analysis was used to detect similarities, differences, and relationships of the variations in deposition fluxes among congeners within the same and different homologues. The results showed that the congener profiles of the atmospheric depositions were primarily determined by those of combustion emissions. Several congeners in some specific samples showed higher proportions within each homologue compared with representative depositions. This result can be partly explained by the influence of impurities in herbicides, 1,3,5-trichloro-2-(4-nitrophenoxy) benzene (CNP) and pentachlorophenol (PCP). The congener profiles of combustion emissions, representative depositions, and urban soils were very similar although their homologue profiles varied. This implied that PCDDs/PCDFs in the urban soils originate from the deposition of combustion emissions and that all congeners within each homologue behave identically in air and soil. Although the congener profiles of the representative depositions were different from those of the sediments in Tokyo Bay and the soil of a paddy field, the combination of congener profiles of the representative depositions and of the impurities in herbicides. CNP and PCP, can explain the congener profiles of the sediments and the paddy field. This study showed that congener-specific data are useful for source identification.  相似文献   

5.
Organic matter amendments have been proposed as a means to enhance soil carbon stocks on degraded soils, particularly under arid climate. Soil organic carbon (SOC) plays a critical role in terrestrial carbon cycling and is central to preserving soil quality. The effects of biowaste compost (BWC) on soil carbon storage were investigated. In addition, changes in soil organic matter (SOM) and even soil organic carbon (SOC) in BWC-amended soils following different applications were studied. The added BWC quantities were as followed: BWC/soil (weight/weight (w/w) respectively: 1/8, 1/4, and 1/2). The different BWC-amended soils were assessed during 180 days under arid ambient conditions and in comparison with control soil. Results showed a significant increase in SOM and SOC with relation to BWC quantities applied. This increase was relatively clear up to 120 days, after which decrease in SOM and SOC levels were observed. Furthermore, results showed improved microbiological activities of the amended soils in comparison with the control soil. This was reflected by the increase of the amended soils’ respirometric activities as cumulative carbon dioxide carbon (C-CO2) as function of incubation time and also in terms of specific respiration expressed as C-CO2/SOC ratios.

Implications: Mediterranean soils under arid climate such as Tunisian soils are poor in organic matter content. Biowastes are potential source for soil fertilization. Composting process is the best method for the stabilization of organic matter of diverse origins. The biowaste compost amendment improves the soil organic carbon storage and enhances the soil microbial activity.  相似文献   


6.
Five factors contribute to episodic depressions in pH and ANC during hydrologic events in low-order streams in Maine: (1) increases of up to 50 microeq litre(-1) NO3; (2) increases of up to 75 microeq litre(-1) organic acidity; (3) increases of as much as 0.3 in the anion fraction of SO4; (4) as much as 100 microeq litre(-1) acidity generated by the salt-effect in soils; and (5) typically < or = 40% dilution by increased discharge. In conjunction with increased discharge, factors 1, 2 or 4 appear necessary to depress pH to less than 5.0. The chemistry of individual precipitation events is irrelevant to the generation of acidic episodes, except those caused by high loading of neutral salts in coastal regions. Increases in discharge, but not necessarily in dilution of solutes, in combination with the chronically high SO4 from atmospheric deposition, provide the antecedent chemical conditions for episodic acidification. Differences in antecedent moisture conditions determine the processes that control output of either ANC or acidifying agents to aquatic systems.  相似文献   

7.
Tyler G 《Chemosphere》2002,48(3):343-349
The partitioning of P among major chemical forms was studied in 110 non-fertilized, semi-natural grassland soils of southeastern Sweden, comprising a wide range of soil acidity and other chemical properties. The P fractions bound to Ca and Fe were closely related to soil acidity, expressed as pH-KCl, especially when calculated as % of the total pool of mineral P. The relationship was inversely linear for log10P-Fe, whereas it was strongly positively curvilinear for log10P-Ca, with a sudden decrease of this fraction below pH-KCl 4.5. Phosphate bound to Al was inversely related to pH-KCl, but the variability accounted for was rather low. Easily exchangeable phosphate, interpreted as the most labile form of P-Al, was more closely related to soil acidity, with very low values at pHg-KCl > 5.5. Soil concentration of organic P was mainly a function of its contents of organic matter. Data were treated by PCA and stepwise regression analysis.  相似文献   

8.
Critical loads are widely used in the effects-based assessment of emission reduction policies. While the impacts of acidification have diminished, there is increasing concern regarding the effects of nitrogen deposition on terrestrial ecosystems. In this context much attention has been focussed on empirical critical loads as well as simulations with linked geochemistry-vegetation models. Surprisingly little attention has been paid to adapt the widely used simple mass balance approach. This approach has the well-established benefit of easy regional applicability, while incorporating specified critical chemical criteria to protect specified receptors. As plant occurrence/biodiversity is related to both the nutrient and acidity status of an ecosystem, a single abiotic factor (chemical criterion) is not sufficient. Rather than an upper limit for deposition (i.e., critical load), linked nutrient nitrogen and acidity chemical criteria for plant occurrence result in an ‘optimal’ nitrogen and sulphur deposition envelope.  相似文献   

9.
Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.  相似文献   

10.
Continuous application of organic and inorganic fertilizers can affect soil and food quality with respect to heavy metal concentrations. The risk of cadmium (Cd) contamination in a long-term (over 20 years) experimental field in North China with an annual crop rotation of winter wheat and summer maize was investigated. The long-term experiment had a complete randomized block design with seven fertilizer treatments and four replications. The seven fertilizer treatments were (1) organic compost (OM), (2) half organic compost plus half chemical fertilizer (OM?+?NPK), (3) NPK fertilizer (NPK), (4–6) chemical fertilizers without one of the major nutrients (NP, PK, and NK), and (7) an unamended control (CK). Soil samples from 0 to 20 cm were collected in 1989, 1999, and 2009 to characterize Cd and other soil properties. During the past 20 years, various extents of Cd accumulation were observed in the soil, and the accumulation was mainly affected by atmospheric dry and wet deposition and fertilization. In 2009, the average Cd concentration in the soil was 148?±?15 μg kg?1 and decreased in the order of NPK?≈?OM?+?NKP?≈?PK?>?NP?≈?NK?>?OM?≈?CK. Sequential extraction of Cd showed that the acid-soluble fraction (F1, 32?±?7 %) and the residual fraction (F4, 31?±?5 %) were the dominant fractions of Cd in the soil, followed by the reducible fraction (F2, 22?±?5 %) and oxidizable fraction (F3, 15?±?6 %). The acid-soluble Cd fraction in the soil and Cd accumulation in the crops increased with soil plant available K. Fraction F3 was increased by soil organic C (SOC) and crop yields, but SOC reduced the uptake of soil Cd by crops. The long-term P fertilization resulted in more Cd buildup in the soil than other treatments, but the uptake of Cd by crops was inhibited by the precipitation of Cd with phosphate in the soil. Although soil Cd was slightly increased over the 20 years of intensive crop production, both soil and grain/kernel Cd concentrations were still below the national standards for environmental and food safety.  相似文献   

11.
Changes in soil organic matter chemical properties after organic amendments   总被引:1,自引:0,他引:1  
Sebastia J  Labanowski J  Lamy I 《Chemosphere》2007,68(7):1245-1253
Organic inputs are used to improve soil physical and chemical properties, but the corresponding changes in soil organic matter (SOM) chemical properties are not well known. In this study, we compared some characteristics of the SOM of a soil receiving either no organic inputs, or two different amendments during 15 years (straw or conifer compost). Quantities of organic carbon and C/N values were determined on particle size fractions after physical soil fractionation to localize changes due to amendments. Contents in reactive functional groups, acid-base properties and copper binding affinities were determined by titration experiments for the soluble fraction of SOM: the fulvic acid fraction (FA). Data of FA extracted from the bulk soil were compared to data of FA extracted from the <20 microm size fraction with the help of either a discrete or a continuous model (fit of data with FITEQL or NICA, respectively). Copper binding characteristics of FA extracted from the <20 microm size fraction did not change significantly after organic inputs, while those of FA extracted from the bulk organic-amended soils were found different from the ones with no amendment. Minor effects observed in the finer soil fractions were ascribed to their low turn-over of organic carbon and/or to a greater homogeneity in the nature of the organic carbon entering these fractions. Our results show major chemical changes in coarser soil organic fractions after organic amendments.  相似文献   

12.
A set of physico-chemical properties of soils: soil pH, hydrolytic acidity, alkaline exchangeable cations, cation exchangeable capacity (CEC), and base saturation were studied in six-year long investigations of ecto-humus (organic layer) and endo-humus (Ah horizon) horizons of forest soils at the Kampinoski National Park in Poland. The soil properties determined in the present study showed differentiated values, depending on the actual horizon, the type and degree of soil development advancement, the genesis of the soil parent material (bedrock) as well as on the development of plant community prevailing in given site.  相似文献   

13.
Seasonal changes in soil pH, sulphate concentration and total-S were measured in two brown earth soils, sampled from deciduous woodlands. One site studied was exposed to severe atmospheric pollution from a coking works while the other site was relatively unpolluted but located in an area receiving wet and dry deposited acidity of greater than 1.0 and 2.4 kg H(+) ha(-1) year(-1), respectively The pH of soil at the heavily polluted site was lower than the relatively unpolluted soil at each monthly sample point, except during November. Annual average sulphate concentrations (LiCl-extractable) were highest in the soil exposed to coking pollution, where they peaked during summer and autumn. A marked difference in total-S was found in soils from the two sites, the heavily polluted soil showing the highest concentration with peaks again occurring during late summer and autumn. Only 4.0% (w/w) of the total-S of the heavily polluted soil occurred as LiCl-extractable sulphate, compared to 21.4% (w/w) for the relatively unpolluted soil, showing that organic sulphur is increased in brown earths following exposure to severe atmospheric pollution from the coking works.  相似文献   

14.
In the context of intense emissions causing atmospheric pollution, tree growth reductions could be related to soil chemistry modifications or direct foliar injuries. To verify these hypotheses, mineral soils were sampled in an area (Murdochville, Canada) where previous studies had demonstrated that tree growth was impacted by smelter emissions and that forest floor lead concentrations could be used as a proxy for atmospheric pollutant depositions. Samples were analysed for Al, Pb (concentrations and isotope ratios), basic cations (Ca, K, P, and Mg) and Zr. Mass balance calculations were performed on soil profiles to assess vertical migration of elements. Pb concentrations in litter diminished gradually with distance from the smelter. The Pb isotope ratios in these organic soil layers were close to those measured in the Murdochville ores. These patterns were not encountered in mineral soil layers. Pb isotope ratios in these layers were close to those measured in uncontaminated geological materials, and Pb concentrations and basic cation depletions were not related to the proximity of the smelter. Growth reduction was closely associated with litter Pb concentrations, which were used as a proxy for atmospheric deposition, but was not correlated with any elemental concentration or cation depletion measured in mineral soil layers. Our overall results suggest that trees responded mainly to direct atmospheric emissions, which caused foliar damage, rather than to soil chemistry modifications.  相似文献   

15.
A microcosm study was conducted to address the influences of air-soil partition and sequestration on the fate of polycyclic aromatic hydrocarbons (PAHs) in soil. Sterilized and unsterilized soils with soil organic carbon (SOC) content ranging from 0.23 to 7.06% were incubated in a chamber with six PAHs supplied through air. After 100 d of incubation when the system approached pseudo-steady state, the PAHs concentrations in the unsterilized soils still correlated with SOC significantly, while the association did not exist for those sterilized. The lower degradation rate in the soil with higher SOC was likely the major reason for the association between SOC and PAHs concentrations, while the decreased surface porosity likely suppressed such correlation for the sterilized samples. The results indicated that the sequestration was likely the major mechanism for the accumulation of PAHs in soils, while both of the soil porosity and PAHs properties had observed influences.  相似文献   

16.
Background, Aim and Scope Acid deposition has become a concern in south China in recent years. This phenomenon has increased to a dramatic extent with the large use of cars and coal- fueled power plants. As a consequence, soils are becoming acidified and their element dynamics will change. A decrease in the nutrient availability will lead to slower plant growth and maybe to a change in the forest type with current species being replaced by new ones with less nutrient requirements. Because of these reasons, it is important to understand how the dynamics of elements will change and what mechanism is part of the process. This knowledge is important for modeling the acidification process and either finding ways to counter it or to predict its consequences. The primary purpose of this study was to provide information about how the dynamics of K, Na, Ca, Mg and P are affected by acid deposition in a typical forest in southern China. Materials and Methods: Experimental soils and saplings were collected directly from the monsoon evergreen broad-leaved forest in Dinghushan. All saplings were transplanted individually into ceramic pots in August 2000 and placed in an open area near their origin site. Pot soils were treated weekly from October, 2000 to July, 2002 with an acidic solution at pH 3.05, pH 3.52, pH 4.00 or pH 4.40, or with tap water as a control. The concentrations of SO42-, NO3-, K+, Na+, Ca2+, Mg2+ and available P and the pH were measured in soil and leachate samples taken at different times. The sapling leaves were collected and their element concentrations were measured at the end of the experiment. Results: Concentrations of soil exchangeable Ca and Mg decreased quickly over time, although only Ca showed changes with the acidic solution treatment and soil exchangeable K was stable because of soil weathering. Leaching of K, Mg and Ca was dependent upon the treatment acidity. Soil available P decreased slowly without any correlation with the acidity of the treatment. All the NO3- added by the treatment was taken up by the plants, but the SO42- added accumulated in the soil. Discussion: Amongst the plant species, Schima superba was little affected by the treatment, the leaf P content was affected in Acmena acuminatissima plants and Cryptocarya concinna was the most susceptible species to soil acidification, with a marked decrease of the leaf K, Ca and Mg concentrations when the treatment acidity increased. Conclusions: Simulated acid deposition affected the dynamics of K, Ca and Mg in the monsoon evergreen broad-leaved forest. The dynamics of Ca in the soil and of K, Mg and Ca in the soil leachates were affected by the acidic solution treatment. If such a soil acidification occurs, Cryptocarya concinna will be amongst the first affected species, but Schima superba will be able to sustain a good growth and mineral nutrition. Recommendations and Perspectives: Acid deposition will lead to imbalance the nutrient elements in the evergreen broad-leaved forest because of accelerated leaching losses of soil exchangeable Ca and Mg. Measures should be developed to slow down soil acidification or nutrient decrease.  相似文献   

17.
Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored.  相似文献   

18.
Krauss M  Wilcke W 《Chemosphere》2005,59(10):1507-1515
The sorption strength of persistent organic pollutants in soils may vary among different soil organic matter (SOM) pools. We hypothesized that polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were unevenly distributed and had different soil organic carbon (SOC)-water partition coefficients (K(OC)) among soil density fractions. We determined the concentrations and K(OC) values of 20 PAHs and 12 PCBs in bulk samples and three density fractions (light, <2.0, medium, 2.0-2.4, and heavy, >2.4 g cm(-3)) of 11 urban topsoils (0-5 cm) from Bayreuth, Germany. The K(OC) values were determined using sequential extraction with methanol-water mixtures (35% and 65% methanol) at 60 degrees C. The sum of 20 PAH concentrations in bulk soil ranged 0.4-186 mg kg(-1), and that of 12 PCB concentrations 1.2-158 microg kg(-1). The concentrations of all PAHs and PCBs decreased in the order light>medium>heavy fraction. When normalized to the SOC concentrations, PAH concentrations were significantly higher in the heavy than in the other density fractions. The K(OC) values of the PAHs in density fractions were 3-20 times higher than those of the PCBs with similar octanol-water partition coefficients (K(OW)). The K(OC) values of individual PAHs and PCBs varied up to a factor of 1000 among the studied soils and density fractions. The K(OC) values of 5- and 6-ring PAHs tended to be highest in the heavy fraction, coinciding with their enrichment in this fraction. For the other PAHs and all PCBs, the K(OC) values did not differ among the density fractions. Thus, there is no relationship between sorption strength and distribution among density fractions, indicating that density fractionation is not a suitable tool to distinguish among differently reactive PAH and PCB pools in soils.  相似文献   

19.
Major ions (Cl-, NO3(-), SO4(2-), Ca2+, Mg2+, Na+, K+ and NH4(+)) were analysed in wet and dry deposition samples collected for 2 years using a polyethylene bottle and funnel collector at Agra in India. The deposition of ionic components (Ca2+ and Mg2+) derived from natural sources i.e. soil were higher than those of anthropogenic origin. In rainwater samples, non-sea-salt fraction was found to be 60-90%. In both wet and dry deposition Ca2+ was found to be the dominant ion which may be due to its large particle diameter. Results suggest that most of the acidity, which occurs due to NO3(-), SO4(2-) and Cl- is neutralized by alkaline constituents, which originate from airborne local soil and dust transported from the Thar desert. Acid neutralizing capacity of soil has also been quantified and found to be 33 x 10(3) neqg(-1). Using deposition data, the critical load for acidity of soil with respect to Ashoka and Eucalyptus was evaluated. The present level of deposition of S and N was found to be much lower than critical loads calculated for S and N. Critical load of exceedance in terms of deposition acidity was also calculated and found to be negative. This indicates that with respect to these species, the ecosystem is protected at the current level of deposition.  相似文献   

20.
Intensive forest monitoring by means of harmonised methods has been conducted in Europe for more than a decade. Risks of atmospheric nitrogen and sulphur deposition are assessed by means of calculations of critical loads and their exceedances. In the present study throughfall and bulk deposition of nitrate (N-NO(3)), ammonium (N-NH(4)) and sulphate (S-SO(4)) show marked spatial patterns and temporal trends. In the period of observation (1999-2004), sulphate deposition on intensive monitoring plots decreased by about one quarter. This is in line with the reduction of S deposition by 70% since 1981 in Europe as a result of successful air pollution control politics under the Convention on Long-range Transboundary Air Pollution (CLRTAP). However, sulphate and especially nitrate and ammonium deposition were found to still exceed critical loads at many forest sites, indicating a continued need for further implementation of air pollution abatement strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号