首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to decrease the land disposal of sewage sludge biosolids and to recover energy, gasification has become a viable option for the treatment of waste biosolids. The process of gasification involves the drying and devolatilization and partial oxidation of biosolids, followed closely by the reduction of the organic gases and char in a single vessel. The products of gasification include a gaseous fuel composed largely of N2, H2O, CO2, CO, H2, CH4, and tars, as well as ash and unburned solid carbon. A mathematical model was developed using published devolatilization, oxidation, and reduction reactions, and calibrated using data from three different experimental studies of laboratory-scale fluidized-bed sewage sludge gasifiers reported in the literature. The model predicts syngas production rate, composition, and temperature as functions of the biosolids composition and feed rate, the air input rate, and gasifier bottom temperature. Several data sets from the three independent literature sources were reserved for model validation, with a focus placed on five species of interest (CO, CO2, H2, CH4, and C6H6). The syngas composition predictions from the model compared well with experimental results from the literature. A sensitivity analysis on the most important operating parameters of a gasifier (bed temperature and equivalence ratio) was performed as well, with the results of the analysis offering insight into the operations of a biosolids gasifier.

Implications:

As gasification becomes a more prominent waste disposal option, understanding the effects of feedstock composition and gasifier parameters on the production of syngas (rate and quality) becomes increasingly important. A model has been developed for the gasification of dried sewage sludge that will allow for prediction of changes in syngas quality (and energy recovery from the waste), and should be helpful in assessing the benefits of new gasification projects.  相似文献   


2.
In the gasification of biomass, it is necessary to limit the amount of by-product tar and increase the yields of hydrogen (H2) and carbon monoxide (CO) (syngas). Therefore, we conducted gasification and reforming experiments on woody biomass using an electric tubular furnace, to evaluate the gas reforming and tar decomposition performance of a NiO/SBA-15 catalyst. As a result, we found that this catalyst is effective for H2 production. It is believed that the increase in H2 volume due to the catalyst occurs through a steam reforming reaction involving hydrocarbons, including methane (CH4), and the water-gas shift reaction. With respect to the influence of the gasifying agent on the reforming effect of the catalyst, the amount of generated carbon dioxide (CO2) and hydrogen (H2) increases because the shift reaction is promoted by supplying steam. On the other hand, it was inferred that the shift reaction rarely occurred because it approaches equilibrium by supplying O2. Furthermore, it is suggested that light aromatic hydrocarbons are decomposed by the catalyst.

Implications: The mesoporous silica catalyst NiO/SBA-15 was highly effective for H2 production and decomposition of light aromatic compounds in the gasification of woody biomass. In the catalyst reaction, supplying steam promoted H2 production. From thermodynamic analysis and discussion, it was also inferred that supplying O2 might prevent the water gas shift reaction. The results are useful for designing a process needed for rich H2 production and gas refining process for further use of syngas.  相似文献   


3.
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of its Brunauer–Emmett–Teller (BET) surface area. Two simulated flue gas conditions, (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, that is, more than 87%, regardless of their BET surface area.

Implications: We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had mercury adsorption efficiency comparable to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.  相似文献   


4.
Wastewater and sludge management and research in Oman: An overview   总被引:1,自引:0,他引:1  
It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.

Implications: Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.  相似文献   


5.
Incineration is a traditional method of treating sewage sludge and the disposal of derived ash is a problem of secondary waste treatment. In this study, sewage sludge ash (SSA) was coated with ferrite through a ferrite process and then used as an adsorbent for ionic dyes (methylene blue [MB] and Procion Red MX-5B [PR]). The modified SSA possessed surface potential that provided electrostatic attraction toward MB and PR. Adsorbent FA10 (named on the basis of being produced from 10 g of SSA in the ferrite process) was used for the adsorption of MB. Ideal pH for adsorption was 9.0 and maximum adsorption capacity based on Langmuir isotherm equation was 22.03 mg/g. Adsorbent FA2.5 (named on the basis of being produced from 2.5 g of SSA in the ferrite process) was used for PR adsorption. Ideal pH for adsorption was 3.0 and the maximum adsorption capacity (calculated as above) was 28.82 mg/g. Kinetic results reveal that both MB and PR adsorption fit the pseudo-second-order kinetic model better than the pseudo-first-order model. The values of activation energy calculated from rate constants were 61.71 and 9.07 kJ/mol for MB and PR, respectively.

Implications:

Magnetic modified adsorbent could be synthesized from sewage sludge ash (SSA). In this study, the adsorption ability of SSA toward ionic dye (methylene blue [MB] and Procion Red MX-5B [PR]) was enhanced by ferrite process. The synthesized Fe3O4 can act as an active site and provide electrostatic attraction toward cationic dye and anionic dye at different pH. The application of magnetic modified adsorbent in wastewater treatment can not only recycle the SSA, but also make SSA become an environmentally friendly material.  相似文献   


6.
Series sludge straw–based activated carbons were prepared by sewage sludge and corn straw with potassium hydroxide (KOH) activation, and the desulfurization performance of activated carbons was studied. To obtain the best desulfurization performance, the optimum ratio between the raw materials and the activator was investigated. The results showed that when the mass ratio of sewage sludge, corn straw, and KOH was 3:7:2, the activated carbon obtained the best breakthrough and saturation sulfur sorption capacities, which were 12.38 and 5.74 times, respectively, those of samples prepared by the nonactivated raw materials. The appropriate KOH could improve the microporosity and alkaline groups, meanwhile reducing the lactone groups, which were all beneficial to desulfurization performance. The chemical adsorption process of desulfurization can be simplified to four main steps, and the main desulfurization products are elemental sulfur and sulfate.

Implications: Sewage sludge (SS) and corn straw (CS) both have great production and wide distribution and are readily available in China. Much attention has been paid on how to deal with them effectively. Based on the environment protection idea of waste treatment with waste and resource recycling, low-cost adsorbents were prepared by these processes. The proposed method can be expanded to the municipal solid waste recycling programs and renewable energy plan. Thus, proceeding with the study of preparing activated carbon by SS and straw as a carbon-based dry desulfurization agent could obtain huge social, economic, and environmental benefits.  相似文献   


7.
The present study revealed the role of earthworm-effective microorganisms (EM) in converting sewage sludge and cassava dregs into a valuable product. Sewage sludge was toxic to earthworm, therefore it was mixed with cassava dregs in 80:20 proportions (dry weight). Treatments included mixed substrate inoculated versus not inoculated with EM and treated with or without earthworms. The pH, total organic carbon, total nitrogen, and C:N ratio decreased from the initial measurements in the range of 17.43–18.46%, 25.48–33.82%, 19.60–25.37%, and 6.68–14.05% respectively; but electrical conductivity and available phosphorus increased in the range of 113.47–158.16% and 42.42–57.58%, respectively. In addition, they interactively increased total phosphorus from 19.84–63.01% and potassium from 16.41–50.78%, and decreased the polycyclic aromatic hydrocarbons content of substrate from 21.17% to 32.14% with an increase in earthworms from 51.71 to 57.69, respectively. Earthworms and EM could be used together as an efficient method for co-composting sewage sludge plus cassava dregs in the tropics. This could be expected to result in stabilization of waste, increase in nutrients, and reduction of pollutant content.

Implications: The first reports of interaction of earthworms and effective microorganisms in the treatment of sewage sludge and cassava dregs in the tropics. Co-composting was an efficient technology for treating sewage sludge and cassava dregs at the same time, in the tropics. The survival rate of the earthworms both> 95%, the highest number of cocoons (640.33) and hatchlings (4694.33) both in EW+EM (Earthworms added and EM inoculated) treatment. Earthworms and EM (Only EM inoculated) interactively increased total phosphorus and potassium content, and decreased the PAH content of substrate with increase in earthworms.  相似文献   


8.
In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments.

In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries.

Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models.

Natural “interventions” - reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems – demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g., carbonaceous species, may cause harm, aiding interpretation of epidemiological studies.

Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer, and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the U.S. EPA rubric for judging possible causality of PM2.5. mass concentrations, be used to assess which PM2.5. species are most harmful to public health.

Implications: Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. “Natural intervention” studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.

A list of acronyms will be found at the end of the article.  相似文献   


9.
Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries.

Implications: Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.  相似文献   


10.
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials.

This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas.

The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW.

Implications: Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.  相似文献   


11.
Biopower can diversify energy supply and improve energy resiliency. Increases in biopower production from sustainable biomass can provide many economic and environmental benefits. For example, increasing biogas production through anaerobic digestion of food waste would increase the use of renewable fuels throughout California and add to its renewables portfolio. Although a biopower project will produce renewable energy, the process of producing bioenergy should harmonize with the goal of protecting public health. Meeting air emission requirements is paramount to the successful implementation of any biopower project. A case study was conducted by collecting field data from a wastewater treatment plant that employs anaerobic codigestion of fats, oils, and grease (FOG), food waste, and wastewater sludge, and also uses an internal combustion (IC) engine to generate biopower using the biogas. This research project generated scientific information on (a) quality and quantity of biogas from anaerobic codigestion of food waste and municipal wastewater sludge, (b) levels of contaminants in raw biogas that may affect beneficial uses of the biogas, (c) removal of the contaminants by the biogas conditioning systems, (d) emissions of NOx, SO2, CO, CO2, and methane, and (e) types and levels of air toxics present in the exhausts of the IC engine fueled by the biogas. The information is valuable to those who consider similar operations (i.e., co-digestion of food waste with municipal wastewater sludge and power generation using the produced biogas) and to support rulemaking decisions with regards to air quality issues for such applications.

Implications: Full-scale operation of anaerobic codigestion of food waste with municipal sludge is viable, but it is still new. There is a lack of readily available scientific information on the quality of raw biogas, as well as on potential emissions from power generation using this biogas. This research developed scientific information with regard to quality and quantity of biogas from anaerobic co-digestion of food waste and municipal wastewater sludge, as well as impacts on air quality from biopower generation using this biogas. The need and performance of conditioning/pretreatment systems for biopower generation were also assessed.  相似文献   


12.
The disposal of industrial brine sludge waste (IBSW) in chlor-alkali plants can be avoided by utilization of IBSW as a sorbent in wet flue gas desulfurization (FGD). The shrinking core model was used to determine the dissolution kinetics of IBSW, which is a vital step in wet FGD. The effects of solid-to-liquid ratio (m/v), temperature, pH, particle size, and stirring speed on the conversion and dissolution rate constant are determined. The conversion and dissolution rate constant decreases as the pH, particle size, and solid-to-liquid ratio are increased and increases as the temperature, concentration of acid, and stirring speed are increased. The sorbents before and after dissolution were characterized using x-ray fluorescence (XRF), x-ray diffraction (XRD), and scanning electron microscopy (SEM). An activation energy of 7.195 kJ/mol was obtained and the product layer diffusion model was found to be the rate-controlling step.

Implications: The use of industrial brine sludge waste as an alternative sorbent in wet flue gas desulfurization can reduce the amounts of industrial wastes disposed of in landfills. This study has proved that the sorbent can contain up to 91% calcium carbonate and trace amounts of sulfate, magnesium, and so on. This can be used as new sorbent to reduce the amount of sulfur dioxide in the atmosphere and the by-product gypsum can be used in construction, as a plaster ingredient, as a fertilizer, and for soil conditioning. Therefore, the sorbent has both economic and environmental benefits.  相似文献   


13.
Plant (vegetable) oil has been evaluated as a substitute for mineral oil–based lubricants because of its natural and environmentally friendly characteristics. Availability of vegetable oil makes it a renewable source of bio-oils. Additionally, vegetable oil–based lubricants have shown potential for reducing hydrocarbon and carbon dioxide (CO2) emissions when utilized in internal combustion (IC) engines and industrial operations. In this study, sunflower oil was investigated to study its lubricant characteristics under different loads using the four-ball tribometer and the exhaust emissions were tested using a four-stroke, single-cylinder diesel engine. All experimental works conformed to American Society for Testing and Materials standard (ASTM D4172-B). Under low loads, sunflower oil showed adequate tribological characteristics (antifriction and antiwear) compared with petroleum oil samples. The results also demonstrated that the sunflower oil–based lubricant was more effective in reducing the emission levels of carbon monoxide (CO), CO2, and hydrocarbons under different test conditions. Therefore, sunflower oil has the potential to be used as lubricant of mating components.

Implications: An experimental investigation of the characteristics of nonedible sunflower oil tribological behaviors and potential as a renewable source for biofluids alternative to the petroleum oils was carried out. The level of emissions of a four–stroke, single-cylinder diesel engine using sunflower oil as a biolubricant was evaluated.  相似文献   


14.
The Motor Vehicle Emission Simulator (MOVES) quantifies emissions as a function of vehicle modal activities. Hence, the vehicle operating mode distribution is the most vital input for running MOVES at the project level. The preparation of operating mode distributions requires significant efforts with respect to data collection and processing. This study is to develop operating mode distributions for both freeway and arterial facilities under different traffic conditions. For this purpose, in this study, we (1) collected/processed geographic information system (GIS) data, (2) developed a model of CO2 emissions and congestion from observations, (3) implemented the model to evaluate potential emission changes from a hypothetical roadway accident scenario. This study presents a framework by which practitioners can assess emission levels in the development of different strategies for traffic management and congestion mitigation.

Implications: This paper prepared the primary input, that is, the operating mode ID distribution, required for running MOVES and developed models for estimating emissions for different types of roadways under different congestion levels. The results of this study will provide transportation planners or environmental analysts with the methods for qualitatively assessing the air quality impacts of different transportation operation and demand management strategies.  相似文献   


15.
Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO2) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C4 hydrocarbons and soot precursor species (C2H2, C2H4, C6H6). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well.

Implications: A reduced combustion mechanism containing 50 C1–C4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency’s (EPA) mandate to achieve smokeless flaring with a high CE.  相似文献   


16.
A new method has been developed for a direct and remote measurement of industrial flare combustion efficiency (CE). The method is based on a unique hyper-spectral or multi-spectral Infrared (IR) imager which provides a high frame rate, high spectral selectivity and high spatial resolution. The method can be deployed for short-term flare studies or for permanent installation providing real-time continuous flare CE monitoring.

In addition to the measurement of CE, the method also provides a measurement for level of smoke in the flare flame regardless of day or night. The measurements of both CE and smoke level provide the flare operator with a real-time tool to achieve “incipient smoke point” and optimize flare performance.

The feasibility of this method was first demonstrated in a bench scale test. The method was recently tested on full scale flares along with extractive sampling methods to validate the method. The full scale test included three types of flares – steam assisted, air assisted, and pressure assisted. Thirty-nine test runs were performed covering a CE range of approximately 60-100%. The results from the new method showed a strong agreement with the extractive methods (r2=0.9856 and average difference in CE measurement=0.5%).

Implications: Because industrial flares are operated in the open atmosphere, direct measurement of flare combustion efficiency (CE) has been a long-standing technological challenge. Currently flare operators do not have feedback in terms of flare CE and smoke level, and it is extremely difficult for them to optimize flare performance and reduce emissions. The new method reported in this paper could provide flare operators with real-time data for CE and smoke level so that flare operations can be optimized. In light of EPA’s focus on flare emissions and its new rules to reduce emissions from flares, this policy-relevant development in flare CE monitoring is brought to the attention of both the regulating and regulated communities.  相似文献   


17.
Vehicle deterioration and technological change influence emission factors (EFs). In this study, the impacts of vehicle deterioration and emission standards on EFs of regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], and nitrogen oxides [NOx]) for gasoline light-duty trucks (LDTs) were investigated according to the inspection and maintenance (I/M) data using a chassis dynamometer method. Pollutant EFs for LDTs markedly varied with accumulated mileages and emission standards, and the trends of EFs are associated with accumulated mileages. In addition, the study also found that in most cases, the median EFs of CO, HC, and NOx are higher than those of basic EFs in the International Vehicle Emissions (IVE) model; therefore, the present study provides correction factors for the IVE model relative to the corresponding emission standards and mileages.

Implications: Currently, vehicle emissions are great contributors to air pollution in cities, especially in developing countries. Emission factors play a key role in creating emission inventory and estimating emissions. Deterioration represented by vehicle age and accumulated mileage and changes of emission standards markedly influence emission factors. In addition, the results provide collection factors for implication in the IVE model in the region levels.  相似文献   


18.
This paper discusses results from a vehicular emissions research study of over 350 vehicles conducted in three communities in Los Angeles, CA, in 2010 using vehicle chase measurements. The study explores the real-world emission behavior of light-duty gasoline vehicles, characterizes real-world super-emitters in the different regions, and investigates the relationship of on-road vehicle emissions with the socioeconomic status (SES) of the region. The study found that in comparison to a 2007 earlier study in a neighboring community, vehicle emissions for all measured pollutants had experienced a significant reduction over the years, with oxides of nitrogen (NOX) and black carbon (BC) emissions showing the largest reductions. Mean emission factors of the sampled vehicles in low-SES communities were roughly 2–3 times higher for NOX, BC, carbon monoxide, and ultrafine particles, and 4–11 times greater for fine particulate matter (PM2.5) than for vehicles in the high-SES neighborhood. Further analysis indicated that the emission factors of vehicles within a technology group were also higher in low-SES communities compared to similar vehicles in the high-SES community, suggesting that vehicle age alone did not explain the higher vehicular emission in low-SES communities.

Evaluation of the emission factor distribution found that emissions from 12% of the sampled vehicles were greater than five times the mean from all of the sampled fleet, and these vehicles were consequently categorized as “real-world super-emitters.” Low-SES communities had approximately twice as many super-emitters for most of the pollutants as compared to the high-SES community. Vehicle emissions calculated using model-year-specific average fuel consumption assumptions suggested that approximately 5% of the sampled vehicles accounted for nearly half of the total CO, PM2.5, and UFP emissions, and 15% of the vehicles were responsible for more than half of the total NOX and BC emissions from the vehicles sampled during the study.

Implications: This study evaluated the real-world emission behavior and super-emitter distribution of light-duty gasoline vehicles in California, and investigated the relationship of on-road vehicle emissions with local socioeconomic conditions. The study observed a significant reduction in vehicle emissions for all measured pollutants when compared to an earlier study in Wilmington, CA, and found a higher prevalence of high-emitting vehicles in low-socioeconomic-status communities. As overall fleet emissions decrease from stringent vehicle emission regulations, a small fraction of the fleet may contribute to a disproportionate share of the overall on-road vehicle emissions. Therefore, this work will have important implications for improving air quality and public health, especially in low-SES communities.  相似文献   


19.
Electrostatic precipitation is considered as an effective technology for fine particle removal. A lab-scale wet electrostatic precipitator (ESP) with wire-to-plate configuration was developed to study particle migration and collection. The performance of the wet ESP was evaluated in terms of the corona discharge characteristics, total removal efficiency and fractional removal efficiency. The corona discharge characteristics and particle removal abilities of the wet ESP were investigated and compared with dry ESP. Particle removal efficiency was influenced by discharge electrode type, SO2 concentration, specific collection area (SCA) and particle/droplet interaction. Results showed that the particle removal efficiency of wet ESP was elevated to 97.86% from 93.75% of dry ESP. Three types of discharge electrodes were investigated. Higher particle removal efficiency and larger migration velocity could be obtained with fishbone electrode. Particle removal efficiency decreased by 2.87% when SO2 concentration increased from 0 ppm to 43 ppm as a result of the suppression of corona discharge and particle charging. The removal efficiency increased with higher SCA, but it changed by only 0.71% with the SCA increasing from 25.0 m2/(m3/s) to 32.5 m2/(m3/s). Meanwhile, the increasing of particle and droplet concentration was favorable to the particle aggregation and improved particle removal efficiency.

Implications: This work tends to study the particle migration and collection under spraying condition. The performance of a wet electrostatic precipitator (ESP) is evaluated in terms of the corona discharge characteristics, total particle removal efficiency, and fractional particle removal efficiency. The effects of water droplets on particle removal, especially on removal of particles with different sizes, is investigated. The optimization work was done to determine appropriate water consumption, discharge electrode type, and specific collection area, which can provide a basis for wet ESP design and application.  相似文献   


20.
Ozone pollution appears as a major air quality issue, e.g. for the protection of human health and vegetation. Formation of ground level ozone is a complex photochemical phenomenon and involves numerous intricate factors most of which are interrelated with each other. Machine learning techniques can be adopted to predict the ground level ozone. The main objective of the present study is to develop the state-of-the-art ensemble bagging approach to model the summer time ground level ozone in an industrial area comprising a hazardous waste management facility. In this study, the feasibility of using ensemble model with seven meteorological parameters as input variables to predict the surface level O3 concentration. Multilayer perceptron, RTree, REPTree, and Random forest were employed as the base learners. The error measures used for checking the performance of each model includes IoAd, R2, and PEP. The model results were validated against an independent test data set. Bagged random forest predicted the ground level ozone better with higher Nash-Sutcliffe coefficient 0.93. This study scaffolded the current research gap in big data analysis identified with air pollutant prediction.

Implications: The main focus of this paper is to model the summer time ground level O3 concentration in an Industrial area comprising of hazardous waste management facility. Comparison study was made between the base classifiers and the ensemble classifiers. Most of the conventional models can well predict the average concentrations. In this case the peak concentrations are of importance as it has serious effect on human health and environment. The models developed should also be homoscedastic.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号