首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated seasonal variability of essential fatty acids (EFA) and methyl mercury (MeHg) concentrations in four size categories of planktonic organisms in two coastal lakes. MeHg concentrations increased significantly with increasing plankton size and were independent of plankton taxonomy. However, total EFA increased from seston to mesozooplankton, but decreased in the cladoceran-dominated macrozooplankton size-class. Analysis of EFA patterns revealed that linoleic, alpha-linolenic, arachidonic, and eicosapentaenoic acids increased with increasing zooplankton size, but docosahexaenoic acid (DHA) in the cladoceran-dominated macrozooplankton was generally lower than in seston. This consistent pattern demonstrates that cladocerans, although bioaccumulating MeHg, convey less DHA than similar-sized copepods to their consumers. It is thus evident that fish consuming cladocerans have restricted access to DHA, yet unrestricted dietary access to MeHg. Thus, the structure of planktonic food webs clearly affects the composition of EFA and regulates dietary supply of these essential nutrients, while MeHg bioaccumulates with increasing zooplankton size.  相似文献   

2.
Our objective was to examine how the behavior of atmospheric mercury (Hg) deposited to boreal lake mesocosms changed over time. We added inorganic Hg enriched in a different stable isotope in each of two years, which allowed us to differentiate between Hg added in the first and second year. Although inorganic Hg and methylmercury (MeHg) continued to accumulate in sediments throughout the experiment, the availability of MeHg to the food web declined within one year. This decrease was detected in periphyton, zooplankton, and water mites, but not in gomphid larvae, amphipods, or fish. We suggest that reductions in atmospheric Hg deposition should lead to decreases in MeHg concentrations in biota, but that changes will be more easily detected in short-lived pelagic species than long-lived species associated with benthic food webs.  相似文献   

3.
We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH(4)) emissions were up to 12 mmol x m(-2) x d(-1) from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH(4) release from lakes to the atmosphere. The carbon dioxide (CO(2)) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO(2) to the atmosphere. The pelagic CH(4) emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N(2)O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N(2)O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH(4) and CO(2) production in lakes, also have importance in the greenhouse gas emissions from reservoirs.  相似文献   

4.
Fish in low-alkalinity lakes having pH of 6.0-6.5 or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher pH. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (CH(3) Hg(+), Cd(2+), and Pb(2+)) at low pH. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-pH water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.  相似文献   

5.
We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton相似文献   

6.
The effects of environmental and maternally derived methylmercury (MeHg) on the embryonic and larval stages of walleye (Stizostedion vitreum) were investigated using eggs collected during two successive spawning seasons. Eggs were collected from fish in a mercury (Hg)-polluted environment (Clay Lake, Ontario, Canada), and from fish in two relatively pristine lakes (Lakes Manitoba and Winnipeg, in the province of Manitoba). Both bioaccumulation of Hg into muscle and its mobilization into eggs was significantly higher in Clay Lake females. Maternal muscle MeHg concentration was positively correlated with female length and egg MeHg was positively correlated with muscle MeHg concentration in all three populations. Hatching success of eggs from all three stocks declined significantly with increasing waterborne MeHg (0.1-7.8 ng l-1). Hatching success was not significantly affected by egg MeHg concentration. Embryonic heart rate declined with increasing waterborne MeHg concentration, but larval growth was not affected. Occurrence of larval deformities was negatively correlated with size of female, but was not significantly correlated with MeHg in either eggs or water. Larval MeHg was positively correlated with the concentrations of MeHg in eggs demonstrating transmission of MeHg from females. Uptake of ambient MeHg was higher in larvae exposed to higher waterborne MeHg concentrations.  相似文献   

7.
Binelli A  Provini A 《Chemosphere》2003,53(2):143-151
Several models of varying complexity have been used to predict pollutant concentrations in the higher levels of the food web from those in lower levels, but the role of the biomagnification process in aquatic food chains is still controversial. We used the fugacity-based approach to verify the transfer of PCBs through the pelagic food chain of Lake Iseo (N. Italy), sampling several zebra mussel specimens and some fish belonging of different trophic levels. The zebra mussel seems to be a suitable starting species for modelling the bioaccumulation process through the trophic web, not only because its physiological characteristics and population size do not change much with time (as do algae and zooplankton) but also because it takes up toxicants exclusively from the water, as shown by the application of two predictive trophic models commonly used. The data provided by one of those models were in good agreement with our experimental data on fish in Lake Iseo, that show a not negligible uptake from food for the top predator species (pike and perch) with an increase of about three times in comparison with the PCB levels measured in the zebra mussel specimens.  相似文献   

8.
In streams, periphyton biofilms are important sinks for trace metals such as cadmium and are primary food sources of many invertebrate consumers. To study Cd trophic transfer, we produced differentially contaminated diets by exposing natural periphyton to environmentally relevant dissolved Cd ranging from 0 to 10 μg L−1 for 6-7 days using a radiotracer approach. On average, periphyton grown during three different seasons bioconcentrated Cd similarly - approximately 1315 (±442) -fold above dissolved concentrations. However, mayfly larvae (Centroptilum triangulifer) raised on these differentially contaminated diets (first instar through adulthood) had significantly higher trophic transfer factors from periphyton grown in Aug and Nov 2008 (4.30 ± 1.55) than from periphyton grown in Jan 2009 (0.85 ± 0.21). This Cd bioaccumulation difference is only partially explained by apparent food quality and subsequent growth differences. Taken together, these results suggest that primary producers at the base of food webs drive metal bioaccumulation by invertebrate grazers.  相似文献   

9.

Background, aim, and scope

Lake Ellasjøen, located in the Norwegian high arctic, contains the highest concentrations of polychlorinated biphenyls (PCBs) ever recorded in fish and sediment from high arctic lakes, and concentrations are more than 10 times greater than in nearby Lake Øyangen. These elevated concentrations in Ellasjøen have been previously attributed, in part, to contaminant loadings from seabirds that use Ellasjøen, but not Øyangen, as a resting area. However, other factors, such as food web structure, organism growth rate, weight, lipid content, lake morphology, and nutrient inputs from the seabird guano, also differ between the two systems. The aim of this study is to evaluate the relative influence of these factors as explanatory variables for the higher PCB fish concentrations in Ellasjøen compared with Øyangen, using both a food web model and empirical data.

Methods

The model is based on previously developed models but parameterized for Lakes Ellasjøen and Øyangen using measured data wherever possible. The model was applied to five representative PCB congeners (PCB 105, 118, 138, 153, and 180) using measured sediment and water concentrations as input data and evaluated with previously collected food web data.

Results

Modeled concentrations are within a factor of two of measured concentrations in 60% and 40% of the cases in Lakes Ellasjøen and Øyangen, respectively, and within a factor of 10 in 100% of the cases in both lakes. In many cases, this is comparable to the variability associated with the data as well as the efficacy of the predictions of other food web model applications.

Discussion

We next used the model to quantify the relative importance of five major differences between Ellasjøen and Øyangen by replacing variables representing each of these factors in the Ellasjøen model with those from Øyangen, in separate simulations. The model predicts that the elevated PCB concentrations in Ellasjøen water and sediment account for 49%–58% of differences in modeled fish PCB concentrations between lakes. These elevated sediment and, to a lesser extent, water concentrations in Ellasjøen are due to PCB loadings from seabird guano. However, sediment–water fugacity ratios of PCBs are consistently greater in Ellasjøen compared with Øyangen, which suggests that internal lake processes also contribute to differences in sediment and water concentrations. We hypothesize that the nutrients associated with guano influence sediment–water fugacity ratios of PCBs by increasing the stock of pelagic algae. As both these algae and the guano settle, their organic carbon content is degraded faster than PCBs, which causes an extra magnification step in Ellasjøen before these detrital particles are consumed by benthic organisms, which are in turn consumed by fish. The model predicts that the remaining ~50% of the differences in PCB concentrations observed between the fish of these lakes are due to other subtle differences in their food web structures.

Conclusions

In conclusion, based on the results of a food web model, we found that the most dominant factors influencing the higher PCB fish concentrations in Lake Ellasjøen compared with Øyangen are the higher sediment and water concentrations in Ellasjøen, caused by seabird guano. Together, sediment and water are predicted to account for 49%–58% of differences in fish concentrations between lakes. Although seabird guano provides a source of nutrients to the lake, in addition to contaminants, empirical data and indirect model results suggest that nutrients are not leading to decreased bioaccumulation, in contrast to what has been observed in temperate, pelagic food webs.

Recommendations and perspectives

The results of this study emphasize the importance of considering even small differences in food web structure when comparing bioaccumulation in two lakes; although the food web structures of Ellasjøen and Øyangen differ only slightly, the model predicts that these differences account for most of the remaining ~50% of the differences in PCB fish concentrations between the two lakes. This study further demonstrates the utility of food web models as we were able to predict and tease apart the influence of various factors responsible for the elevated concentrations in the fish from Lake Ellasjøen, which would have been difficult using the field data alone.  相似文献   

10.
Ecosystem consequences of cyanobacteria in the northern Baltic Sea   总被引:1,自引:0,他引:1  
Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.  相似文献   

11.
Subsurface soils near Clyde Forks, Ontario, Canada, can have naturally high concentrations of mercury (Hg) from local geological sources. To investigate Hg in local aquatic food webs, Hg was measured in fish dorsal muscle (mainly yellow perch [YP] and pumpkinseed sunfish [PS]) and surface sediments from 10 regional lakes. Water chemistry, along with fork length, weight, and stable isotopes (delta15N, delta13C, delta34S) in fish were also measured. No lake sediments had elevated (>0.3microg/g dw) Hg, and average Hg concentrations in fish were not sufficiently high (<1microg/g dw) to be of concern for fish-eating wildlife. Variance in fish Hg was best explained by dietary carbon source (delta13C), and certain lake variables (e.g., pH for YP). PS with more pelagic feeding habits had higher delta34S and Hg than those with more littoral feeding habits. Potential biological linkages between fish Hg and delta34S, a parameter that may be related to the lake sulphate-reducing bacteria activity, requires further investigation.  相似文献   

12.

Purpose

Due to the fast development of industry and the overuse of agrichemicals in past decades, Lake Taihu, an important source of aquatic products for Eastern China, has simultaneously suffered mercury (Hg) contamination and eutrophication. The objectives of this study are to understand Hg transfer in the food web in this eutrophic, shallow lake and to evaluate the exposure risk of Hg through fish consumption.

Methods

Biota samples including macrophytes, sestons, benthic animals, and fish were collected from Lake Taihu in the fall of 2009. The total mercury (THg), methyl mercury (MeHg), ??13C and ??15N in the samples were measured.

Results and discussion

The signature for ??15N increased with the trophic levels. Along with a diet composed of fish, the significant relationship between the ??13C and ??15N indicated that a pelagic foraging habitat is the dominant pathway for energy transfer in Lake Taihu. The concentrations of THg and MeHg in the organisms varied dramatically by ??3 orders of magnitude from primary producers (macrophytes and sestons) to piscivorous fish. The highest concentrations of both THg (100 ng g?1) and MeHg (66 ng g?1), however, were lower than the guideline of 200 ng g?1 of MeHg for vulnerable populations that is recommended by the World Health Organization (WHO). The daily intake of THg and MeHg of 92 and 56 ng day?1 kg?1 body weight, respectively, was generally lower than the tolerable intake of 230 ng day?1 kg?1 body weight for children recommended by the Joint FAO/WHO Expert Committee on Food Additives. Significant relationships between the ??15N and the logarithm of THg and MeHg showed an obvious biomagnification of Hg along the food web. The logarithmic bioaccumulation factor of MeHg in the fish (up to 5.7) from Lake Taihu, however, was relatively low compared to that of other aquatic ecosystems.

Conclusion

Health risk of exposure to Hg by consumption of fish for local residents is relatively low in the Lake Taihu area. Dilution of Hg levels in the phytoplankton induced by eutrophication is a possible factor inhibiting accumulation of MeHg in fish in eutrophic Lake Taihu.  相似文献   

13.
Scavengers play an important role in the flow of energy, matter and pollutants through food webs. For methylmercury (MeHg), which biomagnifies along food chains, the movement of this metal from fish carcasses to aquatic scavengers has never been demonstrated. We measured the transfer of MeHg from fish carcasses to scavenging leeches in two lakes and in the laboratory. The results of a field experiment indicated that leeches were attracted to fish carcasses and that their Hg concentrations increased by as much as a factor of 5 during the time that Hg-rich fish were available for consumption. Under controlled conditions, we exposed leeches to (202)Hg-labelled fish that had been marked in situ following a whole lake (202)Hg addition. Leeches rapidly accumulated Hg from carcasses, and within two weeks assumed the isotopic signature of the carcasses. Necrophagous invertebrates could therefore return Hg from fish carcasses to other trophic levels in lakes.  相似文献   

14.
A lake system in northern Saskatchewan receiving treated metal mine and mill effluent contains elevated levels of selenium (Se). An important step in the trophic transfer of Se is the bioaccumulation of Se by benthic invertebrates, especially primary consumers serving as a food source for higher trophic level organisms. Chironomids, ubiquitous components of many northern aquatic ecosystems, were sampled at lakes downstream of the milling operation and were found to contain Se concentrations ranging from 7 to 80 mg kg−1 dry weight. For comparison, laboratory-reared Chironomus dilutus were exposed to waterborne selenate, selenite, or seleno-DL-methionine under laboratory conditions at the average total Se concentrations found in lakes near the operation. Similarities in Se localization and speciation in laboratory and field chironomids were observed using synchrotron-based X-ray fluorescence (XRF) imaging and X-ray absorption spectroscopy (XAS). Selenium localized primarily in the head capsule, brain, salivary glands and gut lining, with organic Se species modeled as selenocystine and selenomethionine being the most abundant. Similarities between field chironomids and C. dilutus exposed in the laboratory to waterborne selenomethionine suggest that selenomethionine-like species are most readily accumulated, whether from diet or water.  相似文献   

15.
Human exposure to mercury (Hg) mainly occurs through consumption of aquatics, especially fish. In aquatic systems, the bioaccumulation of Hg across trophic levels could be altered by invasive species through changing community composition. The present study is aimed at measuring total mercury (T-Hg) and methylmercury (MeHg) concentrations in non-native (redbelly tilapia (Tilapia zillii)) and native (Benni (Mesopotamichthys sharpeyi) and common carp (Cyprinus carpio)) fish species throughout Shadegan International Wetland and comparing health risk of their mercury contents to the local population. The concentrations were measured using a direct mercury analyzer (DMA 80). The average values of T-Hg and MeHg for native fishes were 19.8 and 10.49 μg/kg. These concentrations for the invasive fish were 28 and 14.62 μg/kg respectively. Despite having less length and weight than the native fish species, tilapia showed significantly higher T-Hg content, yet the lowest concentration of MeHg was observed in common carp with larger body length and weight. Concerning mercury health risk to consumers, tilapia demonstrated the highest estimated weekly intake (EWI) and percentages of tolerable weekly intake (%TWI) for both T-Hg and MeHg, while the highest hazard quotient (HQ) values were obtained for tilapia and Benni. Taken together, the mercury concentrations in the two native and non-native fishes were acceptable according to the international safety guidelines although the local people shall be warned for consumption of tilapia. Furthermore, the low calculated value of tissue residue criterion (TRC) for the wetland fishes sounds a warning.  相似文献   

16.
The marine fate and pelagic food chain transfer of three cyclic volatile methyl siloxanes (cVMS: D4, D5 and D6) was explored in the Inner Oslofjord, Norway, using two dynamic models (the Oslofjord POP Model and the aquatic component of ACC-HUMAN). Predicted concentrations of D4, D5, and D6 in the water column were all less than current analytical detection limits, as was the predicted concentration of D4 in sediment (in agreement with measured data). The concentrations predicted for D5 and D6 in sediment were also in broad agreement with measured concentrations from the Inner Oslofjord. Volatilisation was predicted to be the most important loss mechanism for D5 and D6, whereas hydrolysis was predicted to dominate for D4. Concentrations of all three compounds in sediment are controlled by burial below the active mixed sediment layer. The marine food web model in ACC-HUMAN predicted “trophic dilution” of lipid-normalised cVMS concentrations between zooplankton and herring (Culpea harengus) and between herring and cod (Gadus morhua), principally due to a combination of in-fish metabolism and reduced gut absorption efficiency (as a consequence of high KOW). Predicted D5 concentrations in herring and cod agree well with measured data from the inner fjord, particularly when measured concentrations in zooplankton were used to set the initial dissolved-phase aqueous concentrations. Predicted concentrations of D4 and D6 in fish were over- and under-estimated by the model – possibly due to extrapolation of the metabolism rate constant from D5.  相似文献   

17.
The comparative experimental study of inorganic mercury (HgII), methylmercury (MeHg) and cadmium (Cd) bioaccumulation in the Asiatic clam Corbicula fluminea was based on a 14 days' exposure to the water column or sediment compartments, as initial contamination sources. For each contaminant and exposure source, a five-point concentration range was set up in order to quantify the relationships between the contamination pressure and bioaccumulation capacity, at the whole soft body level and in five organs: gills, mantle, visceral mass, kidney and foot. Hg and Cd bioaccumulation at the whole organism level was proportional to the metal concentrations in the water column or sediment. For similar exposure conditions, the average ratios between the metal concentrations in the bivalves - [MeHg]/[HgII] and [MeHg]/[Cd] - were close to 10 and 5 for the sediment source and 8 and 15 for the water column source. Metal distribution in the five organs revealed strong specificities, according to the different contamination modalities studied: kidney and gills were clearly associated with Cd exposure, mantle and foot with MeHg exposure and the visceral mass with inorganic Hg exposure.  相似文献   

18.
Acidification can affect aquatic organisms directly through hydrogen ion toxicity, and indirectly through disrupted food web dynamics and altered abiotic conditions. Field populations from selected taxa were studied during the Little Rock Lake whole-basin acidification experiment to illustrate patterns whose timing suggests direct (i.e. immediate) or indirect (i.e. delayed or non-uniform) responses to pH change. As the treatment basin was acidified to pH 5.6, 5.2 and 4.7, immediate changes consistent with a direct pH response were observed for species representing several trophic levels. For other taxa (e.g. littoral invertebrates associated with filamentous algal mats, several species of pelagic zooplankton), indirect mechanisms induced by food web changes were more likely explanations for abundance patterns. The results presented here suggest that the responses of aquatic ecosystems to acidification involve a complex interplay between direct pH effects and subsequent indirect interactions.  相似文献   

19.
Fish consumption is considered the primary pathway for MeHg (MeHg) exposure; however, MeHg exposure also occurs through rice ingestion. Rice is grown in an aquatic environment and although documented MeHg concentrations in rice are lower compared to fish tissue, human exposures exceed international guidelines in some regions where rice is a staple food and rice MeHg levels are elevated. Studies concerning human health exposure to MeHg should also include populations where maternal MeHg exposure occurs through ingestion of rice. Rice does not contain long-chain polyunsaturated fatty acids, which are associated with confounding developmental outcomes in offspring. Rice is also a staple food for more than half the world’s population; therefore, it is critical to investigate the potential health risks of maternal ingestion of rice to the developing fetus, the most susceptible population to the deleterious effects of MeHg. Data concerning MeHg in rice are reviewed and micronutrients in rice are discussed.  相似文献   

20.
The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号