首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The combined effects of titanium dioxide (TiO2) nanoparticles and humic acid (HA) on the bioaccumulation of cadmium (Cd) in Zebrafish were investigated. Experimental data on the equilibrium Cd bioaccumulation suggest that only the dissolved Cd effectively contributed to Cd bioaccumulation in HA solutions whereas both the dissolved and TiO2 associated Cd were accumulated in TiO2 or the mixture of HA and TiO2 solutions, due likely to the additional intestine uptake of the TiO2-bound Cd. The equilibrium Cd bioaccumulation in the mixed system was comparable to that in the corresponding HA solutions, and significantly lower than that in the corresponding TiO2 solutions (n = 3, p < 0.05). The presence of either HA or TiO2 (5-20 mg L−1) in water slightly increased the uptake rate constants of Cd bioaccumulation whereas combining HA and TiO2 reduced the uptake rate constants.  相似文献   

2.
Accumulation of cadmium in periphyton was investigated under field conditions while Cd concentration and speciation were dynamically varying in a small stream during rain events. Speciation in water was determined in situ by diffusion gradient in thin-films (DGT) and by modeling of complexation with fulvic acids. During the rain events, dissolved Cd concentrations increased from 0.17 nM to 0.27-0.36 nM, and 70-97% were DGT-labile. Cd content in periphyton closely followed Cd concentrations in water, despite higher concentrations of Zn and Mn, and may be controlled by either free or DGT-labile Cd concentrations. Decrease of Cd content in periphyton after the rain events was slower than the decrease of Cd concentration in water. Concentrations of Zn, Mn, Cu, Pb and Fe in periphyton also followed the dynamic variations of metal concentrations in water. Repeated exposure of periphyton to elevated dissolved Cd may lead to Cd accumulation.  相似文献   

3.
The Marennes-Oléron Bay, hosting the largest oyster production in France, is influenced by the historic polymetallic pollution of the Gironde Estuary. Despite management efforts and decreasing emissions in the Gironde watershed, cadmium levels in oysters from the bay are close to the consumption limit (5 μg g−1 dw, EC). From mid April to mid July 2009, we investigated the role of tidal resuspension and regional hydrodynamics on Cd speciation (seawater, SPM, phytoplankton, sediment, microphytobenthos) and bioaccumulation in 18 month-old oysters (gills, digestive glands, rests of tissues) reared under natural conditions (i) at ∼60 cm above the sediment and (ii) on the sediment surface. Dissolved and particulate Cd concentrations in surface and bottom waters were similar and constant over tidal cycle suggesting the absence of Cd release during sediment resuspension. Temporal dissolved and particulate Cd concentrations were closely related to Gironde Estuary water discharges, showing increasing concentrations during flood situations and decreasing concentrations afterwards. Cd depletion in the water column was associated with increasing Cd in the [20-100 μm] plankton fraction, suggesting Cd bioaccumulation. After 3 months, enrichment factors of Cd in tissues of oysters exposed in the water column and directly on the sediment were respectively 3.0 and 2.2 in gills, 4.7 and 3.2 in digestive glands and 4.9 and 3.4 in remaining tissues. Increasing Cd bioaccumulation in gills, digestive glands and remaining tissues can be related to elevated dissolved Cd in the bay, suggesting gill contamination via the direct pathway and subsequent internal redistribution of Cd to other organs and tissues. Elevated Cd contents in oysters reared on tables could be attributed to different trophic Cd transfer (phytoplankton versus microphytobenthos) or to different oyster metabolisms between the rearing conditions as suggested by metallothionein concentrations.  相似文献   

4.
The amphipod Hyalella azteca was exposed for 28 d to different combinations of Zn contaminated sediment and food. Sediment exposure (+clean food) resulted in increased Zn body burdens, increased mortality and decreased body mass when the molar concentrations of simultaneously extracted Zn were greater than the molar concentration of Acid Volatile Sulfide (SEMZn-AVS > 0), suggesting that dissolved Zn was a dominant route of exposure. No adverse effect was noted in the foodexposure (+clean sediment), suggesting selective feeding or regulation. Combined exposure (sediment + food) significantly increased adverse effects in comparison with sediment exposure, indicating contribution of dietary Zn to toxicity and bioaccumulation. The observed enhanced toxicity also supports the assumption on the presence of an avoidance/selective feeding reaction of the amphipods in the single sediment or food exposures. During 14 d post-exposure in clean medium, the organisms from the same combined exposure history received two feeding regimes, i.e. clean food and Zn spiked food. Elevated Zn bioaccumulation and reduced reproduction were noted in amphipods that were offered Zn spiked food compared to the respective organisms that were fed clean food. This was explained by the failure of avoidance/selective feeding behavior in the absence of an alternative food source (sediment), forcing the amphipods to take up Zn while feeding. Increasing Zn body burdens rejected the assumption that Zn uptake from food was regulated by H. azteca. Our results show that the selective feeding behavior should be accounted for when assessing ecological effects of Zn or other contaminants, especially when contaminated food is a potential exposure route.  相似文献   

5.
The accumulation and trophic transfer of the platinum group elements (PGE): Rh, Pd and Pt; have been studied in short-term (5 day) exposures conducted in aquaria containing the marine macroalga, Ulva lactuca, and/or the grazing mollusc, Littorina littorea. Metals added to sea water (to concentrations of 20 μg L−1) were taken up by U. lactuca in the order Rh, Pt > Pd and by L. littorea in the order Pd ≥ Pt ≥ Rh, with greatest metal accumulation in the latter generally occurring in the visceral complex and kidney. When fed contaminated alga, accumulation of Rh and Pd by L. littorea, relative to total available metal, increased by an order of magnitude, while accumulation of Pt was not readily detected. We conclude that the diet is the most important vector for accumulation of Rh and Pd, while accumulation of Pt appears to proceed mainly from the aqueous phase.  相似文献   

6.
Little Rock Lake, a small (18 ha), low-alkalinity (25 microeq litre(-1), pH 6.1) seepage lake in northern Wisconsin, was divided into two basins by a flexible, inert barrier and, beginning in spring 1985, the north basin was acidified in three 2-year steps to pH 5.6, 5.1 and 4.7. The annual average pH of the reference basin remained near 6.1. As part of a comprehensive programme to determine the chemical and biological responses to acidification, minor metals (Al, Fe, Mn) and trace metals (Cd, Cu, Pb, Zn) in lake water (0.4 microm pore filtered samples), periphyton, zooplankton, and yellow perch (Perca flavescens) were measured. At pH 5.6, dissolved Mn and Fe increased in the acidified basin. At pH 5.1 and 4.7, dissolved Al, Fe, Mn, Cd and Zn were elevated in the acidified basin. At pH 4.7, dissolved Pb in the acidified basin became elevated over reference basin levels. Dissolved Cu remained similar in both basins down to pH 4.7. Cd burdens in periphyton collected on artificial substrates were lower in the treatment basin at pH 5.1 (1.8 microg g(-1) dry wt.) than in the reference basin at pH 6.1 (7.5 microg g(-1) dry wt.), but Al and Fe burdens in periphyton were similar in both basins. Likewise, Cd levels in muscle tissue of perch from the treatment basin at pH 4.7 were lower (26 ng g(-1) dry wt.) than in the reference basin at pH 6.1 (36 ng g(-1) dry wt.); Al and Fe burdens were similar in perch muscle tissue from both basins. Levels of Cd and Fe in zooplankton from the acidified basin at pH 4.7 were approximately equal to 2x higher than in animals from the reference basin. In both basins of the lake, Al and Cd levels in lake biota decreased with increasing trophic level, demonstrating that food chain biomagnification does not occur for these metals.  相似文献   

7.
Cadmium (Cd) levels in paddy fields across Taiwan have increased due to emission from industry. To ensure the production of rice that meets food quality standards, predictive models or suitable soil tests are needed to evaluate the quality of soils to be used for rice cropping. Levels of Cd in soil and rice grains were measured in 19 paddy fields across the western plains in Taiwan. Cadmium levels in soil range from less than 0.1 mg kg?1 to 30 mg kg?1. Measured Cd levels in brown rice were predicted very well (R2 > 0.8) based on Cd and Zinc in a 0.01 M CaCl2 extract or a soil–plant transfer model using the reactive soil Cd content, pH, and cation exchange capacity. In contrast to current soil quality standards used in Taiwan, such models are effective in identifying soils where Cd in rice will exceed food quality standards.  相似文献   

8.
Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg−1 Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil.  相似文献   

9.
Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice.  相似文献   

10.
Hyperaccumulators are grown in contaminated soil and water in order that contaminants are taken up and accumulated. Transport of metals from soil to plant is initially dependent on the solubility and mobility of metals in soil solution which is controlled by soil and metal properties and plant physiology. Complexation with organic and inorganic ligands may increase mobility and availability of metals for plants. In this work the influence of desferrioxamine-B (DFO-B), which naturally is produced in the rhizosphere, and zeolite on Cd accumulation in root and shoot of Thlaspi caerulescens (Cd hyperaccumulator) was investigated. Plants were grown in pots with clean quartz sand, amended with 1% zeolite; treatment solutions included 0, 10, and 100 μM Cd and 70 μM DFO-B. Addition of zeolite to the quartz sand significantly reduced Cd concentration in plant tissues and translocation from root to shoot. On contrary, DFO-B considerably enhanced Cd sorption by roots and translocation to aerial part of plants. Treating the plants with zeolite and DFO-B together at 10 μM Cd resulted in reduction of the bioaccumulation factor but enhancement of Cd translocation from root to shoot at the rate of 13%. In contrast, at 100 μM Cd in the solution both bioaccumulation and translocation factors decreased. Total metal accumulation as a key factor for evaluating the efficiency of phytoremediation was highly influenced by treatments. Presence of zeolite in pots significantly decreased total Cd accumulation by plants, whereas, DFO-B clearly enhanced it.  相似文献   

11.
Heavy metal contamination can negatively impact arid ecosystems; however a thorough examination of bioaccumulation patterns has not been completed. We analyzed the distribution of As, Cd, Cu, Pb and Zn in soils, seeds and ant (Pogonomyrmex rugosus) populations of the Chihuahuan Desert near El Paso, TX, USA. Concentrations of As, Cd, Cu, and Pb in soils, seeds and ants declined as a function of distance from a now inactive Cu and Pb smelter and all five metals bioaccumulated in the granivorous ants. The average bioaccumulation factors for the metals from seeds to ants ranged from 1.04× (As) to 8.12× (Cd). The findings show bioaccumulation trends in linked trophic levels in an arid ecosystem and further investigation should focus on the impacts of heavy metal contamination at the community level.  相似文献   

12.
There has been recent concern regarding the possibility of antibiotics entering the aquatic food chain and impacting human consumers. This work reports experimental results of the bioconcentration of the antibiotic oxytetracycline (OTC) by the Asian watermeal plant (Wolffia globosa Hartog & Plas) and bioaccumulation of OTC in watermeal and water by the seven-striped carp (Probarbus jullieni). They show, for the first time, the extent to which OTC is able to transfer from water to plant to fish and enter the food chain. The mean bioconcentration factor (dry weight basis) with watermeal was 1.28 × 103 L kg−1. Separate experiments were undertaken to characterize accumulation of OTC by carp from water and watermeal. These showed the latter pathway to be dominant under the conditions employed. The bioconcentration and biomagnification factors for these processes were 1.75 L kg−1 and 2 × 10−4 kg g−1 respectively. Using an aqueous concentration range of 0.34–3.0 μg L−1, hazard quotients for human consumption of contaminated fish of 1.3 × 10−2 to 1.15 × 10−1 were derived.  相似文献   

13.
A lake system in northern Saskatchewan receiving treated metal mine and mill effluent contains elevated levels of selenium (Se). An important step in the trophic transfer of Se is the bioaccumulation of Se by benthic invertebrates, especially primary consumers serving as a food source for higher trophic level organisms. Chironomids, ubiquitous components of many northern aquatic ecosystems, were sampled at lakes downstream of the milling operation and were found to contain Se concentrations ranging from 7 to 80 mg kg−1 dry weight. For comparison, laboratory-reared Chironomus dilutus were exposed to waterborne selenate, selenite, or seleno-DL-methionine under laboratory conditions at the average total Se concentrations found in lakes near the operation. Similarities in Se localization and speciation in laboratory and field chironomids were observed using synchrotron-based X-ray fluorescence (XRF) imaging and X-ray absorption spectroscopy (XAS). Selenium localized primarily in the head capsule, brain, salivary glands and gut lining, with organic Se species modeled as selenocystine and selenomethionine being the most abundant. Similarities between field chironomids and C. dilutus exposed in the laboratory to waterborne selenomethionine suggest that selenomethionine-like species are most readily accumulated, whether from diet or water.  相似文献   

14.

Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2 = 0.793, 0.807 and 0.739) and leaves (R 2 = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2 = 0.668, 0.694 and 0.673) and leaves (R 2 = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.

  相似文献   

15.
Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg−1 in soil) and a soil pot trial (control, 100 mg Cd kg−1), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg−1) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg−1) in a pot trial, and (3) rates of ROL (15-31 mmol O2 kg−1 root d.w. h−1). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw.  相似文献   

16.
In recent environmental legislation, such as the Water Framework Directive in the European Union (WFD, 2000/60/EC), the importance of metal speciation and biological availability is acknowledged, although analytical challenges remain. In this study, the Voltammetric In situ Profiler (VIP) was used for high temporal resolution in situ metal speciation measurements in estuarine waters. This instrument simultaneously determines Cd, Cu and Pb species within a size range (ca. <4 nm) that is highly relevant for uptake by organisms. The colloidal metal fraction can be quantified through a combination of VIP measurements and analyses of total dissolved metal concentrations.VIP systems were deployed over tidal cycles in a seasonal study of metal speciation in the Fal Estuary, southwest England. Total dissolved concentrations were 4.97-315 nM Cu, 0.13-8.53 nM Cd and 0.35-5.75 nM Pb. High proportions of Pb (77 ± 17%) and Cu (60 ± 25%) were present as colloids, which constituted a less important fraction for Cd (37 ± 30%). The study elucidated variations in the potentially toxic metal fraction related to river flow, complexation by organic ligands and exchanges between dissolved and colloidal phases and the sediment. Based on published toxicity data, the bioavailable Cu concentrations (1.7-190 nM) in this estuary are likely to severely compromise the ecosystem structure and functioning with respect to species diversity and recruitment of juveniles. The study illustrates the importance of in situ speciation studies at high resolution in pursuit of a better understanding of metal (bio)geochemistry in dynamic coastal systems.  相似文献   

17.
A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg−1. A biomass production of 1 and 5 t dm ha−1 yr−1 yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.  相似文献   

18.
Fluoride (F) contamination is a global environmental problem, as there is no cure of fluorosis available yet. Prosopis juliflora is a leguminous perennial, phreatophyte tree, widely distributed in arid and semi-arid regions of world. It extensively grows in F endemic areas of Rajasthan (India) and has been known as a “green” solution to decontaminate cadmium, chromium and copper contaminated soils. This study aims to check the tolerance potential of P. juliflora to accumulate fluoride. For this work, P. juliflora seedlings were grown for 75 d on soilrite under five different concentrations of F viz., control, 25, 50, 75 and 100 mg NaF kg−1. Organ-wise accumulation of F, bioaccumulation factor (BF), translocation factor (TF), growth ratio (GR) and F tolerance index (TI) were examined. Plant accumulated high amounts of F in roots. The organ-wise distribution showed an accumulation 4.41 mg kg−1dw, 12.97 mg kg−1dw and 16.75 mg kg−1dw F, in stem, leaves and roots respectively. The results indicated significant translocation of F from root into aerial parts. The bioaccumulation and translocation factor values (>1.0) showed high accumulation efficiency and tolerance of P. juliflora to F. It is concluded that P. juliflora is a suitable candidate for phytoremediation purpose and can be explored further for the decontamination of F polluted soils.  相似文献   

19.
Human activities have resulted in cadmium (Cd) and sulfur (S) accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of excessive S supply on iron plaque formation and Cd accumulation in rice plants, using two Cd levels (0, 1.5 mg kg−1) combined with three S concentrations (0, 60, 120 mg kg−1). The results showed that excessive S supply significantly decreased Cd accumulation in brown rice due to the decrease of Cd availability and the increase of glutathione in rice leaves. But excessive S supply obviously increased Cd accumulation in roots due to the decrease of iron plaque formation on the root surface of rice. Therefore, excessive S supply may result in loss of rice yield, but it could effectively reduce Cd accumulation in brown rice exposed to Cd contaminated soils.  相似文献   

20.
This paper reports on the partitioning behaviour of 15 perfluorinated compounds (PFCs), including C4-C10 sulfonates and C5-C14 carboxylic acids, between water, sediment and fish (European chub, Leuciscus cephalus) in the Orge River (nearby Paris). Total PFC levels were 73.0 ± 3.0 ng L−1 in water and 8.4 ± 0.5 ng g−1 in sediment. They were in the range 43.1-4997.2 ng g−1 in fish, in which PFC tissue distribution followed the order plasma > liver > gills > gonads > muscle. Sediment-water distribution coefficients (log Kd) and bioaccumulation factors (log BAF) were in the range 0.8-4.3 and 0.9-6.7, respectively. Both distribution coefficients positively correlated with perfluoroalkyl chain length. Field-based biota-sediment accumulation factors (BSAFs) are also reported, for the first time for PFCs other than perfluorooctane sulfonate. log BSAF ranged between −1.3 and 1.5 and was negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号