首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Park S  Lee I  Cho C  Sung K 《Chemosphere》2008,70(6):1117-1123
Landfill gases could be vented through a layer of landfill cover soil that could serve as a biofilter to oxidize methane to carbon dioxide and water. Properly managed landfill cover soil layers may reduce atmospheric CH4 emissions from landfills. In the present study, the effects of earthworm cast and powdered activated carbon (PAC) on the CH4 removal capacity of the landfill cover soil was investigated. For this purpose, column and batch tests were conducted using three different materials: typical landfill cover soil, landfill cover soil amended with earthworm cast, and landfill cover soil amended with PAC. The maximum CH4 removal rate of the columns filled with landfill cover soil amended with earthworm cast was 14.6mol m(-2)d(-1), whereas that of the columns filled with typical landfill cover soil was 7.4mol m(-2)d(-1). This result shows that amendment with earthworm cast could stimulate the CH4-oxidizing capacity of landfill cover soil. The CH4 removal rate of the columns filled with landfill cover soil amended with PAC also showed the same removal rate, but the vertical profile of gas concentrations in the columns and the methanotrophic population measured in the microbial assay suggested that the decrease of CH4 concentration in the columns is mainly due to sorption. Based on the results from this study, amendment of landfill cover soil with earthworm cast and PAC could improve its CH4 removal capacity and thus achieve a major reduction in atmospheric CH4 emission as compared with the same landfill cover soil without any amendment.  相似文献   

2.
Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation.

Implications: Uncertainties in the estimation of biogenic emissions associated with the characterization of land cover in global and regional data products were examined in eastern Texas. Misclassification between trees and low-growing vegetation in central Texas resulted in substantial differences in isoprene and monoterpene emission estimates and predicted ground-level ozone concentrations. Results from this study indicate the importance of land cover validation at regional scales.  相似文献   

3.
Two cover sprays of phosmet were applied to an orchard adjoining a camping area and a bird sanctuary with a resident goose population. Insecticide residues were monitored on orchard leaves, orchard ground cover, ground cover in the camp-site and along the adjacent lakeshore. Despite attempts to minimize drift, significant spray residues were found outside the target area. Residues on ground cover and leaves were reduced by sprinkler irrigation subsequent to spray application.  相似文献   

4.
The fumigant 1,3-dichloropropene (1,3-D) is considered to be a potential replacement for methyl bromide when methyl bromide is phased out in 2005. This study on surface emissions and subsurface diffusion of 1,3-D in a Florida sandy soil was conducted in field beds with or without plastic covers. After injection of the commercial fumigant Telone II by conventional chisels to field beds at 30cm depth which were covered with polyethylene film (PE), virtually impermeable film, or no cover (bare), (Z)- and (E)-1,3-D rapidly diffused upward. Twenty hours after injection, majority of (Z)- and (E)-1,3-D had moved upward from 30 cm depth to the layer of 5-20 cm depth. Downward movement of the two isomers in the beds with or without a plastic cover was not significant. (Z)-1,3-D diffused more rapidly than (E)-1,3-D. Virtually impermeable films (VIF) had a good capacity to retain (Z)- and (E)-1,3-D in soil pore air space. Vapor concentrations of the two isomers in the shallow subsurface of the field bed covered with VIF were greater than that in the two beds covered with polyethylene film (PE) or no cover (bare). In addition, VIF cover provided more uniform distribution of (Z)- and (E)-1,3-D in shallow subsurface than PE cover or no cover. Virtually impermeable film also had a better capability to retard surface emissions of the two isomers from soil in field beds than PE cover or no cover.  相似文献   

5.
Abstract

Two cover sprays of phosmet were applied to an orchard adjoining a camping area and a bird sanctuary with a resident goose population. Insecticide residues were monitored on orchard leaves, orchard ground cover, ground cover in the camp‐site and along the adjacent lakeshore. Despite attempts to minimize drift, significant spray residues were found outside the target area. Residues on ground cover and leaves were reduced by sprinkler irrigation subsequent to spray application.  相似文献   

6.
Abstract

The fumigant 1,3-dichloropropene (1,3-D) is considered to be a potential replacement for methyl bromide when methyl bromide is phased out in 2005. This study on surface emissions and subsurface diffusion of 1,3-D in a Florida sandy soil was conducted in field beds with or without plastic covers. After injection of the commercial fumigant Telone II by conventional chisels to field beds at 30 cm depth which were covered with polyethylene film (PE), virtually impermeable film, or no cover (bare), (Z)- and (E)-1,3-D rapidly diffused upward. Twenty hours after injection, majority of (Z)- and (E)-1,3-D had moved upward from 30 cm depth to the layer of 5–20 cm depth. Downward movement of the two isomers in the beds with or without a plastic cover was not significant. (Z)-1,3-D diffused more rapidly than (E)-1,3-D. Virtually impermeable films (VIF) had a good capacity to retain (Z)- and (E)-1,3-D in soil pore air space. Vapor concentrations of the two isomers in the shallow subsurface of the field bed covered with VIF were greater than that in the two beds covered with polyethylene film (PE) or no cover (bare). In addition, VIF cover provided more uniform distribution of (Z)- and (E)-1,3-D in shallow subsurface than PE cover or no cover. Virtually impermeable film also had a better capability to retard surface emissions of the two isomers from soil in field beds than PE cover or no cover.  相似文献   

7.
The relationship between different features of lichen communities in Quercus robur canopies and environmental variables, including concentrations of NO2 and NH3 was investigated. NO2 concentration was the most significant variable, it was positively correlated with the proportion of lichen cover comprising nitrophytes and negatively correlated with total lichen cover. None of the lichen community features were correlated with NH3 concentrations, which were relatively low across the site. Since nitrophytes and nitrophobes are likely to react in opposite directions to nitrogenous compounds, total lichen cover is not a suitable indicator for these pollutants. It is, therefore, suggested that the proportion of lichen cover comprising nitrophytes may be a suitable simple indicator of air quality, particularly in locations where the pollution climate is dominated by oxides of nitrogen.  相似文献   

8.
Environmental Science and Pollution Research - The impacts of vegetation cover changes (VCCs) and land use land cover changes (LULCCs) on climate variabilities need to be addressed while...  相似文献   

9.
Using data from a variety of sources, land use and vegetation in Texas were mapped with a spatial resolution of approximately 1 km. Over 600 classifications were used to characterize the land use and land cover throughout the state and field surveys were performed to assign leaf biomass densities, by species, to the land cover classifications. The total leaf biomass densities associated with these land use classifications ranged from 0 to 556 g/m2, with the highest assigned total and oak leaf biomass densities located in central and eastern Texas. The land cover data were used as input to a biogenic emissions model, GLOBEIS2. Estimates of biogenic emissions of isoprene based on GLOBEIS2 and the new land cover data showed significant differences when compared to biogenic isoprene emissions estimated using previous land cover data and emission estimation procedures. For example, for one typical domain in eastern Texas, total daily isoprene emissions increased by 38% with the new modeling tools. These results may ultimately affect the way in which ozone and other photochemical pollutants are modeled and evaluated in the state of Texas.  相似文献   

10.
This study analyses the relation of forest cover and stream flow on the 266 km2 Koga watershed in a headwater of Blue Nile Basin using both observed hydrological data and community perception. The watershed declined from 16% forest cover in 1957 to 1% by 1986. The hydrological record did not reveal changes in the flow regime between 1960 and 2002 despite the reduction in forest area. This agrees with the perception of the downstream community living near the gauging station. The upstream community, however, reported both decreases in low flows and increases in high flows shortly after the forest cover was reduced. The upstream deforestation effect appeared to have been buffered by a wetland lower in the watershed. This study concludes that community perception can be a complement to observational data for better understanding how forest cover influences the flow regime.  相似文献   

11.
A new-coupled air quality numerical modeling system has been developed and applied to the study on the adjusting and controlling effect of forest cover on air quality. The modeling system is composed of Plant Canopy Layer Model (PCLM), Urban Scale Meteorological Model (USMM), and High-Resolution Chemical Model (HRCM). The system was applied to the study on the ecological adjusting and controlling effects on PM10 and O3 in Jinan City, China. The results show that the forest cover can adjust and control PM10 and O3 significantly by reducing the concentrations of PM10 while increasing the concentrations of O3 with the increase of forest cover.  相似文献   

12.
Olson World Ecosystem (OWE) land cover data based on data sources of the 1970s and 1980s with a 10-min spatial resolution, and up-to-date Moderate Resolution Imaging Spectroradiometer (MODIS) land cover data with a 30-s resolution, were used, respectively, in modeling wind-blown desert dust in the southwest United States. The model using different land cover data sets preformed similarly in modeling meteorological field patterns, vertical profiles and surface wind and temperature, in comparisons against observations. The differences of wind and temperature at a specific time and location can be big. Compared against satellite and ground measurements, modeled dust spatial distributions using MODIS land cover data were considerably better than those using OWE land cover. Site against site comparisons of modeled and observed surface PM2.5 concentration time series showed that model performance improved significantly using MODIS land cover data. Modeled surface PM2.5 contour distributions using MODIS land cover data compared more favorably against observations. The performance statistics for modeled PM2.5 concentrations at 40 surface sites increased from 0.15 using OWE data, to 0.58 using MODIS data. This demonstrates that the survey updates and spatial resolution of land cover data are critical in correctly predicting dust events and dust concentrations. Using land cover data such as MODIS data from satellite remote sensing is promising in improving wind-blown dust modeling and forecasting.  相似文献   

13.
Zhou Q  Li B  Chen Y 《Ambio》2011,40(7):807-818
This study investigates environmental change over a 30-year period and attempts to gain a better understanding of human impacts on an arid environment and their consequences for regional development. Multi-temporal remotely sensed imagery was acquired and integrated to establish the basis for change detection and process analysis. Land cover changes were investigated in two categories, namely categorical change using image classification and quantitative change using a vegetation index. The results show that human-induced land cover changes have been minor in this remote area. However, the pace of growth of human-induced change has been accelerating since the early 1990s. The analysis of the multi-temporal vegetation index also shows no overall trend of rangeland deterioration, although local change of vegetation cover caused by human activities was noticeable. The results suggest that the current trend of rapid growth may not be sustainable and that the implementation of effective counter-measures for environmentally sound development is a rather urgent matter.  相似文献   

14.
The effect of compost and vegetation on methane (CH4) oxidation was investigated during wet and dry conditions in a tropical region. A laboratory-scale experiment was conducted to examine the performance of nonvegetated and vegetated landfill cover systems in terms of CH4 oxidation efficiency. Two types of landfill cover materials (compost and sandy loam) and two species of tropical grasses (Sporobolus virginicus and Panicum repens) were studied for their effect on the CH4 oxidation reaction. It was found that the use of compost as cover material could maintain a high methane oxidation rate (MOR) of 12 mol CH4/m3 x day over a 250-day period. Leachate application showed a positive effect on promoting methanotrophic activity and increasing MOR. A high MOR of 12 mol CH4/m3 x day was achieved when using compost cover with P. repens during wet and dry seasons when leachate irrigation was practiced. In dry conditions, a lower MOR of 8 mol CH4/m3 x day was observed for 80 days.  相似文献   

15.
Suzuki K  Anegawa A  Endo K  Yamada M  Ono Y  Ono Y 《Chemosphere》2008,73(9):1428-1435
This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.  相似文献   

16.
Noronha L  Siqueira A  Sreekesh S  Qureshy L  Kazi S 《Ambio》2002,31(4):295-302
This article is based on a larger case study that investigated the role of tourist induced and other population movements in causing coastal ecosystem change in Goa, India. It focuses especially upon agro-ecosystems locally known as khazan lands, and sand dunes, and how they are transformed to accommodate the needs of tourists and tourism. The effects of different forms of tourism upon land cover and land-use change is assessed. The research findings suggest that it is not population movements alone that cause ecosystem changes, but the changes in relations between people and ecosystems. This means that in some cases land cover has not changed as much as land use, and in other cases land cover has changed dramatically. Intermediary influences upon land use and land-cover change are also legal, political, and economic factors, particularly changes in property rights.  相似文献   

17.
With the phase-out of methyl bromide scheduled for 2005, alternative fumigants are being sought. This study of Telone C35, a mixture of (Z)- and (E)-1,3-dichloropropene (1,3-D) with chloropicirin (CP), focuses on its emissions, distribution, and persistence in Florida sandy soil in microplots with different soil-water and organic matter carbon (C) content with and without two different plastic film mulches. The addition of CP did not affect the physical behavior of the isomers of 1,3-D. Slower subsurface dispersion and longer residence time of the mixed fumigant occurred at higher water content. An increase in the percent organic carbon in the soil led to a more rapid decrease for chloropicirin than for 1,3-dichloropene isomers. The use of a virtually impermeable film (VIF) for soil cover provided a more even distribution and longer persistence under all the conditions studied in comparison to polyethylene (PE) film cover or no cover. The conditions of near field capacity water content, low organic matter, and a virtually impermeable film cover yielded optimum conditions for the distribution, emission control, and persistence of Telone C35 in a Florida sandy soil.  相似文献   

18.
Vertically migrating landfill gases pose inimical challenges to site revegetation strategies. Laboratory studies were made to examine the efficacy of ectomycorrhizae and soil cover to obviate the challenges of ethylene and methane. In the presence of ethylene concentrations 相似文献   

19.
生活垃圾填埋场封场后种植植物中重金属迁移研究   总被引:3,自引:1,他引:3  
在上海老港生活垃圾填埋场填埋单元封场的覆盖土中掺混了矿化垃圾种植植物,分析Cd、Pb、Cu、Zn 4种重金属在土壤和植物中的迁移变化,研究表明:(1)覆盖土土质从一般耕作土变成肥沃土壤;覆盖土和种植混合土重金属Cd、Pb、Cu、Zn中Cd、Pb含量相近,但种植土的Cu含量略大于覆盖原土,Zn含量远大于覆盖原土;(2)植物能富集土壤和垃圾中的重金属,木本植物的根部富集重金属的能力强于草本植物,但重金属在草本植物根、茎、叶中的迁移速度大于木本植物;(3)植物根、茎、叶的Cu、Zn含量均远大于未受污染土壤种植植物相应部位的Cu、Zn含量,种植的植物不能供家养动物食用,以免通过食物链作用危及人体安全.  相似文献   

20.
Spruce stands in Northern Bohemia forests, damaged to various degrees by industrial pollution, have shown establishment of grass cover following tree defoliation. Populations of vesicular-arbuscular mycorrhizal (VAM) fungi were studied under this grass cover in four permanent plots with spruce under different levels of pollution stress. Soil and root samples were collected in April and June within each plot as follows: (1) sites without grass, (2) sites with initial stages of grass invasion, and (3) sites with fully developed grass cover. In all plots, the highest number of propagules were recovered from samples taken from sites having full grass cover. Mycorrhizal infection of grass was highest in the plot with the severest pollution damage and lowest in the least damaged plot. The development of grass cover and VAM infection of grass increased with tree defoliation caused by air pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号