首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particle composition data for PM2.5 samples collected at Kalmiopsis Interagency Monitoring of Protected Visual Environments (IMPROVE) site in southwestern Oregon from March 2000 to May 2004 were analyzed to provide source identification and apportionment. A total of 493 samples were collected and 32 species were analyzed by particle induced X-ray emission, proton elastic scattering analysis, photon-induced X-ray fluorescence, ion chromatography, and thermal optical reflectance methods. Positive matrix factorization (PMF) was used to estimate the source profiles and their mass contributions. The PMF modeling identified nine sources. In the Kalmiopsis site, the average mass was apportioned to wood/field burning (38.4%), secondary sulfate (26.9%), airborne soil including Asian dust (8.6 %), secondary nitrate (7.6%), fresh sea salt (5.8%), OP-rich sulfate (4.9%), aged sea salt (4.5 %), gasoline vehicle (1.9%), and diesel emission (1.4%). The potential source contribution function (PSCF) was then used to help identify likely locations of the regional sources of pollution. The PSCF map for wood/field burning indicates there is a major potential source area in the Siskiyou County and eastern Oregon. The potential source locations for secondary sulfate are found in western Washington, northwestern Oregon, and the near shore Pacific Ocean where there are extensive shipping lanes. It was not possible to extract a profile directly attributable to ship emissions, but indications of their influence are seen in the secondary sulfate and aged sea salt compositions.  相似文献   

2.
Gildemeister AE  Hopke PK  Kim E 《Chemosphere》2007,69(7):1064-1074
Data from the speciation trends network (STN) was used to evaluate the amount and temporal patterns of particulate matter originating from local industrial sources and long-range transport at two sites in Detroit, MI: Allen Park, MI, southwest of both Detroit and the areas of heavy industrial activity; Dearborn, MI, located on the south side of Detroit near the most heavily industrialized region. Using positive matrix factorization (PMF) and comparing source contributions at Allen Park to those in Dearborn, contributions made by local industrial sources (power plants, coke refineries, iron smelting, waste incineration), local area sources (automobile and diesel truck) and long range sources of PM(2.5) can be distinguished in greater Detroit. Overall, the mean mass concentration measured at Dearborn was 19% higher than that measured at Allen Park. The mass at Allen Park was apportioned as: secondary sulfate 31%, secondary nitrate 28%, soil 8%, mixed aged sea and road salts 4%, gasoline 15%, diesel 4%, and biomass burning 3%. At Dearborn the mass was apportioned as: secondary sulfate 25%, secondary nitrate 20%, soil 12%, mixed aged sea and road salts 4%, gasoline 20%, diesel 8%, iron and steel, 5%, and mixed industrial 7%. The impact of the iron and steel, soil, and mixed aged sea and road salt was much higher at the Dearborn site than at the Allen Park site, suggesting that close proximity to a local industrial complex has a direct negative impact on local air quality.  相似文献   

3.
To identify major PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) sources with a particular emphasis on the ship engine emissions from a major port, integrated 24 h PM2.5 speciation data collected between 2000 and 2005 at five United State Environmental Protection Agency's Speciation Trends Network monitoring sites in Seattle, WA were analyzed. Seven to ten PM2.5 sources were identified through the application of positive matrix factorization (PMF). Secondary particles (12–26% for secondary nitrate; 17–20% for secondary sulfate) and gasoline vehicle emissions (13–31%) made the largest contributions to the PM2.5 mass concentrations at all of the monitoring sites except for the residential Lake Forest site, where wood smoke contributed the most PM2.5 mass (31%). Other identified sources include diesel vehicle emissions, airborne soil, residual oil combustion, sea salt, aged sea salt, metal processing, and cement kiln. Residual oil combustion sources identified at multiple monitoring sites point clearly to the Port of Seattle suggesting ship emissions as the source of oil combustion particles. In addition, the relationship between sulfate concentrations and the oil combustion emissions indicated contributions of ship emissions to the local sulfate concentrations. The analysis of spatial variability of PM2.5 sources shows that the spatial distributions of several PM2.5 sources were heterogeneous within a given air shed.  相似文献   

4.
Integrated ambient particulate matter < or =2.5 microm in aerodynamic diameter (PM2.5) samples were collected at a centrally located urban monitoring site in Washington, DC, on Wednesdays and Saturdays using Interagency Monitoring of Protected Visual Environments samplers. Particulate carbon was analyzed using the thermal optical reflectance method that divides carbon into four organic carbon fractions, pyrolyzed organic carbon, and three elemental carbon fractions. A total of 35 variables measured in 718 samples collected between August 1988 and December 1997 were analyzed. The data were analyzed using Positive Matrix Factorization and 10 sources were identified: sulfate (SO4(2-))-rich secondary aerosol I (43%), gasoline vehicle (21%), SO4(2-)-rich secondary aerosol II (11%), nitrate-rich secondary aerosol (9%), SO4(2-)-rich secondary aerosol III (6%), incinerator (4%), aged sea salt (2%), airborne soil (2%), diesel emissions (2%), and oil combustion (2%). In contrast to a previous study that included only total organic carbon and elemental carbon fractions, motor vehicles were separated into fractions identified as gasoline vehicle and diesel emissions containing carbon fractions whose abundances were different between the two sources. This study indicates that the temperature-resolved carbon fraction data can be utilized to enhance source apportionment, especially with respect to the separation of diesel emissions from gasoline vehicle sources. Conditional probability functions using surface wind data and deduced source contributions aid in the identifications of local sources.  相似文献   

5.
The primary emission source contributions to fine organic carbon (OC) and fine particulate matter (PM2.5) mass concentrations on a daily basis in Atlanta, GA, are quantified for a summer (July 3 to August 4, 2001) and a winter (January 2-31, 2002) month. Thirty-one organic compounds in PM2.5 were identified and quantified by gas chromatography/mass spectrometry. These organic tracers, along with elemental carbon, aluminum, and silicon, were used in a chemical mass balance (CMB) receptor model. CMB source apportionment results revealed that major contributors to identified fine OC concentrations include meat cooking (7-68%; average: 36%), gasoline exhaust (7-45%; average: 21%), and diesel exhaust (6-41%; average: 20%) for the summer month, and wood combustion (0-77%; average: 50%); gasoline exhaust (14-69%; average: 33%), meat cooking (1-14%; average: 5%), and diesel exhaust (0-13%; average: 4%) for the winter month. Primary sources, as well as secondary ions, including sulfate, nitrate, and ammonium, accounted for 86 +/- 13% and 112 +/- 15% of the measured PM2.5 mass in summer and winter, respectively.  相似文献   

6.
The Minnesota Particulate Matter 2.5 (PM2.5) Source Apportionment Study was undertaken to explore the utility of PM2.5 mass, element, ion, and carbon measurements from long-term speciation networks for pollution source attribution. Ambient monitoring data at eight sites across the state were retrieved from the archives of the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and analyzed by an Effective Variance – Chemical Mass Balance (EV-CMB) receptor model with region-specific geological source profiles developed in this study. PM2.5 was apportioned into contributions of fugitive soil dust, calcium-rich dust, taconite (low grade iron ore) dust, road salt, motor vehicle exhaust, biomass burning, coal-fired utility, and secondary aerosol. Secondary sulfate and nitrate contributed strongly (49–71% of PM2.5) across all sites and was dominant (≥60%) at IMPROVE sites. Vehicle exhausts accounted for 20–70% of the primary PM2.5 contribution, largely exceeding the proportion in the primary PM2.5 emission inventory. The diesel exhaust contribution was separable from the gasoline engine exhaust contribution at the STN sites. Higher detection limits for several marker elements in the STN resulted in non-detectable coal-fired boiler contributions which were detected in the IMPROVE data. Despite the different measured variables, analytical methods, and detection limits, EV-CMB results from a nearby IMPROVE-STN non-urban/urban sites showed similar contributions from regional sources – including fugitive dust and secondary aerosol. Seasonal variations of source contributions were examined and extreme PM2.5 episodes were explained by both local and regional pollution events.  相似文献   

7.
Abstract

This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001–2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988–1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   

8.
Cetin B  Yatkin S  Bayram A  Odabasi M 《Chemosphere》2007,69(8):1267-1277
Atmospheric concentrations of polychlorinated biphenyls (PCBs) and trace elements were measured at two sites (Industrial and Urban) located around the Aliaga industrial region, Izmir, Turkey. Average sigma 36PCB concentrations were 3136+/-824 and 1371+/-642 pg m(-3) for summer and winter periods, respectively in the Industrial site and they were 314+/-129 and 847+/-610 pg m(-3) in the Urban site. The elemental content showed that the PM(10) measured at the Industrial site was dominated by terrestrial elements and trace elements emitted by the iron-steel plants (Fe, Zn and Pb). The elemental profile at the Urban site was typical for Aegean Region that was dominated by terrestrial elements (Ca, Al, Mg) and sea salt (Na). Sources of particle-phase PCBs and trace elements were identified using factor analysis (FA) and were apportioned by chemical mass balance (CMB) model. FA suggested that the steel industry, fuel oil combustion, or the nearby vinyl chloride process in the petrochemical plant, and soil were significant PCB sources. CMB results showed that at the Industrial site, the contribution of steel industry and soil to particle-phase PCBs were 71% and 22%, respectively, while at the Urban site, the contributions were 33% and 49%, respectively. Steel industry was also the dominant contributor for trace elements around the site. Fugacity calculations in air and soil showed that the soil acts as a secondary source to the atmosphere for low molecular weight PCBs especially in summer and as a sink for the higher molecular weight ones.  相似文献   

9.
Fine particulate matter (PM2.5) samples were simultaneously collected on Teflon and quartz filters between February 2010 and February 2011 at an urban monitoring site (CAMS2) in Dhaka, Bangladesh. The samples were collected using AirMetrics MiniVol samplers. The samples on Teflon filters were analyzed for their elemental composition by PIXE and PESA. Particulate carbon on quartz filters was analyzed using the IMPROVE thermal optical reflectance (TOR) method that divides carbon into four organic carbons (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. The data were analyzed by positive matrix factorization using the PMF2 program. Initially, only total OC and total EC were included in the analysis and five sources, including road dust, sea salt and Zn, soil dust, motor vehicles, and brick kilns, were obtained. In the second analysis, the eight carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, EC3) were included in order to ascertain whether additional source information could be extracted from the data. In this case, it is possible to identify more sources than with only total OC and EC. The motor vehicle source was separated into gasoline and diesel emissions and a fugitive Pb source was identified. Brick kilns contribute 7.9 μg/m3 and 6.0 μg/m3 of OC and EC, respectively, to the fine particulate matter based on the two results. From the estimated mass extinction coefficients and the apportioned source contributions, soil dust, brick kiln, diesel, gasoline, and the Pb sources were found to contribute most strongly to visibility degradation, particularly in the winter.

Implications: Fine particle concentrations in Dhaka, Bangladesh, are very high and cause significant degradation of urban visibility. This work shows that using carbon fraction data from the IMPROVE OC/EC protocol provides improved source apportionment. Soil dust, brick kiln, diesel, gasoline, and the Pb sources contribute strongly to haze, particularly in the winter.  相似文献   

10.
Source types or source regions contributing to the concentration of atmospheric fine particles measured at Brigantine National Wildlife Refuge, NJ, were identified using a factor analysis model called Positive Matrix Factorization (PMF). Cluster analysis of backward air trajectories on days of high- and low-factor concentrations was used to link factors to potential source regions. Brigantine is a Class I visibility area with few local sources in the center of the eastern urban corridor and is therefore a good location to study Mid-Atlantic regional aerosol. Sulfate (expressed as ammonium sulfate) was the most abundant species, accounting for 49% of annual average fine mass. Organic compounds (22%; expressed as 1.4 x organic carbon) and ammonium nitrate (10%) were the next abundant species. Some evidence herein suggests that secondary organic aerosol formation is an important contributor to summertime regional aerosol. Nine factors were identified that contributed to PM2.5 mass concentrations: coal combustion factors (66%, summer and winter), sea salt factors (9%, fresh and aged), motor vehicle/mixed combustion (8%), diesel/Zn-Pb (6%), incinerator/industrial (5%), oil combustion (4%), and soil (2%). The aged sea salt concentrations were highest in springtime, when the land breeze-sea breeze cycle is strongest. Comparison of backward air trajectories of high- and low-concentration days suggests that Brigantine is surrounded by sources of oil combustion, motor vehicle/mixed combustion, and waste incinerator/industrial emissions that together account for 17% of PM2.5 mass. The diesel/Zn-Pb factor was associated with sources north and west of Brigantine. Coal combustion factors were associated with coal-fired power plants west and southwest of the site. Particulate carbon was associated not only with oil combustion, motor vehicle/mixed combustion, waste incinerator/industrial, and diesel/Pb-Zn, but also with the coal combustion factors, perhaps through common transport.  相似文献   

11.
This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001-2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988-1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   

12.
Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter < or = 2.5 microm in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 microg/m3 showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identified in this study with the estimated error structures and min values among different MDL values from the five instruments: secondary sulfate aerosol (41%), secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.  相似文献   

13.
Abstract

Source types or source regions contributing to the concentration of atmospheric fine particles measured at Brigantine National Wildlife Refuge, NJ, were identified using a factor analysis model called Positive Matrix Factorization (PMF). Cluster analysis of backward air trajectories on days of high- and low-factor concentrations was used to link factors to potential source regions. Brigantine is a Class I visibility area with few local sources in the center of the eastern urban corridor and is therefore a good location to study Mid-Atlantic regional aerosol. Sulfate (expressed as ammonium sulfate) was the most abundant species, accounting for 49% of annual average fine mass. Organic compounds (22%; expressed as 1.4 × organic carbon) and ammonium nitrate (10%) were the next abundant species. Some evidence herein suggests that secondary organic aerosol formation is an important contributor to summertime regional aerosol.

Nine factors were identified that contributed to PM2.5 mass concentrations: coal combustion factors (66%, summer and winter), sea salt factors (9%, fresh and aged), motor vehicle/mixed combustion (8%), diesel/Zn-Pb (6%), incinerator/industrial (5%), oil combustion (4%), and soil (2%). The aged sea salt concentrations were highest in springtime, when the land breeze-sea breeze cycle is strongest. Comparison of backward air trajectories of high- and low-concentration days suggests that Brigantine is surrounded by sources of oil combustion, motor vehicle/mixed combustion, and waste incinerator/industrial emissions that together account for 17% of PM2.5 mass. The diesel/Zn-Pb factor was associated with sources north and west of Brigantine. Coal combustion factors were associated with coal-fired power plants west and southwest of the site. Particulate carbon was associated not only with oil combustion, motor vehicle/mixed combustion, waste incinerator/industrial, and diesel/Pb-Zn, but also with the coal combustion factors, perhaps through common transport.  相似文献   

14.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

15.
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.  相似文献   

16.
Zhou J  Wang T  Huang Y  Mao T  Zhong N 《Chemosphere》2005,61(6):792-799
PAHs in five-stage size segregated aerosol particles were investigated in 2003 at urban and suburban sites of Beijing. The total concentration of 17 PAHs ranged between 0.84 and 152 ng m(-3), with an average of 116 ng m(-3), in urban area were 1.1-6.6 times higher than those measured in suburban area. It suggested a serious pollution level of PAHs in Beijing. PAHs concentrations increased with decreasing the ambient temperature. Approximately 68.4-84.7% of PAHs were adsorbed on particles having aerodynamic diameter 2.0 microm. Nearly bimodal distribution was found for PAHs with two and three rings, more than four rings PAHs, however, followed unimodal distribution. The overall mass median diameter (MMD) for PAHs decreased with increasing molecular weight. Diagnostic ratios and normalized distribution of PAHs indicated that the PAHs in aerosol particles were mainly derived from fossil fuel combustion. Coal combustion for domestic heating was probably major contributor to the higher PAHs loading in winter, whereas PAHs in other seasons displayed characteristic of mixed source of gasoline and diesel vehicle exhaust. Biomass burning and road dust are minor contributors to the PAHs composition of these aerosol particles. Except for source emission, other factors, such as meteorological condition, photochemical decay, and transportation from source to the receptor site, should to be involved in the generation of the observed patterns.  相似文献   

17.
Speciated fine particulate matter (PM2.5) data collected as part of the Speciation Trends Network at four sites in the Midwest (Detroit, MI; Cincinnati, OH; Indianapolis, IN; and Northbrook, IL) and as part of the Interagency Monitoring of Protected Visual Environments program at the rural Bondville, IL, site were analyzed to understand sources contributing to organic carbon (OC) and PM2.5 mass. Positive matrix factorization (PMF) was applied to available data collected from January 2002 through March 2005, and seven to nine factors were identified at each site. Common factors at all of the sites included mobile (gasoline)/secondary organic aerosols with high OC, diesel with a high elemental carbon/OC ratio (only at the urban sites), secondary sulfate, secondary nitrate, soil, and biomass burning. Identified industrial factors included copper smelting (Northbrook, Indianapolis, and Bondville), steel/manufacturing with iron (Northbrook), industrial zinc (Northbrook, Cincinnati, Indianapolis, and Detroit), metal plating with chromium and nickel (Detroit, Indianapolis, and Bondville), mixed industrial with copper and iron (Cincinnati), and limestone with calcium and iron (Bondville). PMF results, on average, accounted for 96% of the measured PM2.5 mass at each site; residuals were consistently within tolerance (+/-3), and goodness-of-fit (Q) was acceptable. Potential source contribution function analysis helped identify regional and local impacts of the identified source types. Secondary sulfate and soil factors showed regional characteristics at each site, whereas industrial sources typically appeared to be locally influenced. These regional factors contributed approximately one third of the total PM2.5 mass, on average, whereas local mobile and industrial sources contributed to the remaining mass. Mobile sources were a major contributor (55-76% at the urban sites) to OC mass, generally with at least twice as much mass from nondiesel sources as from diesel. Regional OC associated with secondary sulfate and soil was generally low.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) present in size- and density-fractionated road dust were measured to identify the important fractions in urban runoff and to analyse their sources. Road dust was collected from a residential area (Shakujii) and a heavy traffic area (Hongo Street). The sampling of road dust from the residential area was conducted twice in different seasons (autumn and winter). The collected road dust was separated into three or four size-fractions and further fractionated into light (<1.7 g/cm3) and heavy (>1.7 g/cm3) fractions by using cesium chloride solution. Light particles constituted only 4.0+/-1.4%, 0.69+/-0.03% and 3.4+/-1.0% of the road dust by weight for Shakujii (November), Shakujii (February) and Hongo Street, respectively but contained 28+/-10%, 33+/-3% and 44+/-8% of the total PAHs, respectively. The PAH contents in the light fractions were 1-2 orders of magnitude higher than those in the heavy fractions. In the light fractions, the 12PAH contents in February were significantly higher than the 12PAH contents in November (P<0.01), whereas in the heavy fractions, no significant difference was found (P>0.05). Cluster analysis revealed that there was a significant difference in the PAH profiles between locations rather than between size-fractions, density-fractions and sampling times. Multiple regression analysis indicated that asphalt/pavement was the major source of Shakujii road dust, and that tyre and diesel vehicle exhaust were the major sources of finer and coarser fractions collected from Hongo Street road dust, respectively.  相似文献   

19.
The sources and distribution of carbon in ambient suspended particles (PM2.5 and PM10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes (13C/12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (?27 to ?29‰ vs. PDB), while street dust (PM10) represented the isotopically heaviest endmember (?17‰). The δ13C values of rural soils from four geographically separated sites were similar (?20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between ?23 and ?26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around ?25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM10 fraction and 54% for PM2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (?29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope measurements are useful for distinguishing between some carbon sources in suspended particles to MCMA air, and that wind direction has an impact on the distribution of carbon sources in this basin.  相似文献   

20.
Sources of carbonaceous aerosols collected from three sites of Chattanooga, TN (CH), Muscle Shoals, AL (MS), and Look Rock, TN (LR) in the Tennessee Valley Region (TVR) were apportioned using both organic tracer-based chemical mass balance (CMB) modeling and radiocarbon (14C) measurement and the results were compared. Eight sources were resolved by CMB, among which wood combustion (averaging 0.92 μg m−3) was the largest contributor to primary organic carbon (OC) concentrations, followed by gasoline exhaust (0.35 μg m−3), and diesel exhaust (0.18 μg m−3). The identified primary sources accounted for 43%, 71%, and 14% of measured OC at CH, MS, and LR, respectively. Contributions from the eight primary sources resolved by CMB could explain 107±10% of ambient elemental carbon (EC) concentrations, with diesel exhaust (66±32%) and wood combustion (37±33%) as the most important contributors. The fossil fractions in total carbon determined by 14C measurements were in reasonably good agreement with that in primary (OC+EC) carbon apportioned by CMB in the MS winter samples. The comparison between the 14C and CMB results revealed that contemporary sources dominated other OC in the TVR, especially in summertime (84% contemporary).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号