首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
隧道实验测定南京市机动车PM10排放因子   总被引:3,自引:0,他引:3  
胡伟  钟秦 《环境工程学报》2009,3(10):1852-1855
选取南京城市隧道进行机动车PM10平均排放因子的测试研究.采用质量平衡模型和多元线性回归方法计算了4种车型PM10的综合排放因子.结果表明:隧道内机动车PM10平均排放因子为0.347±0.100 g/(km·辆);大型车的PM10排放因子远高于其他车型的排放因子,其次是中型车和摩托车,小型车最小,其综合排放因子分别为1.440 g/(km·辆)、0.850 g/(km·辆)、0.790 g/(km·辆)和0.320 g/(km·辆);在车速相似的情况下,本隧道实验所测机动车的PM10排放因子与国内隧道实验结果相仿,却远大于国外隧道实验结果.  相似文献   

2.
应用车载排放测试系统(PEMS)对天津市4辆大型客车(国Ⅲ、国Ⅳ、国Ⅴ柴油车和国Ⅴ液化天然气车)进行了实际道路尾气排放测试。结果表明,3辆柴油车CO、NOx、总碳氢化合物(THC)和颗粒物(PM)的平均排放因子分别为3.435、6.431、0.131、0.324g/km,天然气车CO、NOx、THC和PM的排放因子分别为1.240、17.451、6.535、0.003g/km。总体看来,3辆柴油车的污染物排放速率随着排放标准的提高而降低,与其相比,天然气车的CO和PM排放速率相对较低,而NOx和THC排放速率较高;4辆大型客车各污染物排放速率在加速工况下排放速率最高,怠速工况下排放速率最低。随着国Ⅳ柴油车行驶速度从0~20km/h提高到80~100km/h,尾气温度逐渐上升,选择性催化还原装置对NOx的削减率可从41.8%升高到64.5%。  相似文献   

3.
对典型道路扬尘进行采样,分析夏季北京市西城区、海淀区、门头沟区不同类型道路积尘负荷和PM_(2.5)粒度乘数(K_(2.5),g/(km·辆)),并对高峰与非高峰期K_(2.5)进行统计分析,通过计算得到了PM_(2.5)、PM_(10)排放因子和排放强度。结果表明:除北营房中街和阜外大街以外的积尘负荷总体表现为支路次干道主干道快速路,门头沟区海淀区西城区。不同道路类型PM_(10)排放因子表现为主干道次干道支路快速路(西城区除外),PM_(10)排放强度表现为快速路主干道次干道支路。K_(2.5)的分析结果表明,K_(2.5)表现为快速路主干道次干道支路,西城区海淀区门头沟区,高峰期K_(2.5)普遍比非高峰期大,其中午高峰最大。此外,北营房中街积尘负荷为0.681g/m~2,PM_(10)排放因子和排放强度分别为1.04g/(km·辆)和8.43kg/(km·d),明显小于其他区支路;阜外大街积尘负荷为0.724g/m~2,PM_(10)排放因子和排放强度分别为1.28g/(km·辆)和44.74kg/(km·d),明显小于其他区主干道;这可能与两条道路的日平均洒水次数较多有关。研究结果可为北京市道路扬尘排放清单的构建提供数据参考。  相似文献   

4.
利用COPERTIV模型计算和车载尾气测量系统实测得到不同行驶速度下的机动车尾气排放因子,并分析不同车型不同排放标准等级车辆的行驶速度对排放的影响。调查研究北京市城区路网早高峰、平峰、晚高峰和夜间的车流量、车型构成、行驶速度,基于Arc GIS建立平均车速和行驶里程的网格分布数据库,并对比车速修正前后不同道路类型不同污染物的排放强度。结果表明,基于COPERT IV模型和车载测量系统计算的小客车NOx和HC排放因子随车速的变化趋势类似,均随车速的增加呈现U型分布;柴油公交车与柴油卡车NOx和HC排放因子随着车速的升高而减小。4个时间段平均车速大小排序为:夜间(44 km·h~(-1))晚高峰(34 km·h~(-1))平峰(32 km·h~(-1))早高峰(28 km·h~(-1))。车速修正后CO和HC的排放量上升,上升幅度分别为10.6%~11.8%和8.8%~9.2%,NOx和PM排放量下降,下降幅度分别为22.1%~23.3%和12.7%~13.5%。  相似文献   

5.
机动车排放遥感监测反映实际道路行驶中的排放状况,对全面分析排放水平有很强的统计意义。北京市机动车排放遥感监测的CO、HC和NOx的平均浓度分别为1.94%、388×10-6和700×10-6。北京市机动车排放的CO、HC和NOx中50%分别来自于15.90%、13.98%、11.13%的高排放车,但某车辆对于一种污染物出现高排放并不意味着它对其他污染物也是高排放。根据遥感监测得到北京市轻型汽油车基于油耗的CO、HC和NOx平均尾气管排放因子分别为200.1g/L、11.05 g/L和6.68 g/L。  相似文献   

6.
天津冬季PM2.5与PM10中有机碳、元素碳的污染特征   总被引:2,自引:0,他引:2  
研究了天津冬季PM2.5和PM10中碳成分的污染特征.结果表明,天津冬季PM2.5和PM10的平均质量浓度分别为(124.4±60.9)、(224.6±131.2)μg/m3;总碳(TC)、有机碳(OC)与元素碳(EC)在PM2.5中的平均质量分数比在PM10中分别高出5.0%、3.6%、1.2%;PM2.5中OC、EC的相关系数较高,为0.95,表明OC、EC的来源相对简单,可能主要反应了燃煤和机动车尾气的贡献.OC/EC的平均值在PM2.5和PM10中分别为3.9、4.9.次生有机碳(SOC)在PM2.55和PM10中的平均质量浓度分别为14.9、23.4/μg/m3,分别占OC的48.5%(质量分数,下同)、49.8%,OC/EC较高可能主要与直接排放源有关;PM2.5中的OC1与OC2的比例明显高于PM10,而聚合碳(OPC)的比例又低于PM10,同时PM2.5与PM10中的EC1含量均较高,表明天津冬季燃煤取暖和机动车尾气是重要的污染源.  相似文献   

7.
以东城区、顺义区、朝阳区、平谷区为例分析北京四大功能区的机动车排放特征并构建排放清单,通过调查统计各区路网分布、机动车类型、行驶里程等,运用COPERT模型计算不同车型各污染物的排放因子并分析污染物空间分布。结果表明,小客车数量均占据各区主导地位。CO、碳氢化合物主要由小客车贡献,而大客车及各类货车是PM2.5、PM10及NOx的主要贡献来源。顺义区和朝阳区的污染物年排放量明显高于其他两区。基于功能区划分来讨论机动车排放特征并建立排放清单能为城市规划及污染防治提供有效途径。  相似文献   

8.
利用隧道实验法对澳洲Vulturestreet公交专用隧道的细微颗粒物和气体污染物进行连续4d实测,分析了自然通风和纵向通风下隧道内NOX、细微颗粒物数目浓度以及细微颗粒物粒度分布特征。结果表明,隧道内细微颗粒物粒径谱呈双峰分布,峰值区段细微颗粒物粒径分别在19~25、70~105nm,判定为低硫柴油公交车和CNG公交车共同作用结果。隧道内NO2/NOX比值与NOX具有很强的相关性(R2=0.8320),当NOX大于1.000×10-6时,NO2/NOX渐进于(0.088±0.001),同时,NOX与细微颗粒物数目浓度、细微颗粒物总体积(VFP)呈明显的线性相关关系。柴油公交车和CNG公交车的混合条件下,细微颗粒物数目浓度、NOX平均排放因子分别为(2.48±1.53)×1014个/km、(12.8±5.1)g/km,柴油车和CNG公交车细微颗粒物数目浓度排放因子和NO排放因子没有明显差异。  相似文献   

9.
为更直观地展示机动车尾气污染物的空间分布和时变情况,采用COPERT模型计算排放因子,结合基础速度分配模型得到的分车型车速计算的排放速率,再结合格林希尔治速度—流量模型得到的分车型流量计算的污染物排放量,最后将各路段、各种污染物的机动车排放量在地图上渲染出来,即完成了机动车尾气动态排放清单的研制,以便于分析机动车污染物的排放规律。以广州内环为例,对内环路动态排放清单进行详细分析,结果表明:在早高峰时段有9个路段污染物排放量高于其他路段,而同一路段一天内污染物排放量的变化基本符合交通流的变化趋势,CO、挥发性有机物、NOx和PM2.5排放量两两之间线性相关性强。  相似文献   

10.
重型柴油车排放已经成为中国城市与区域大气污染的重要来源。为研究负载条件对重型柴油车实际道路排放的影响,利用车载排放测试(PEMS)方法对2辆国Ⅱ重型柴油货车开展实际道路排放测试,分析不同负载(空载、半载和满载)条件下的尾气污染物排放特征。基于机动车比功率(VSP)方法分析了不同速度区间的气态污染物(NOx、CO和总碳氢化合物(THC))排放特征,同时通过滤膜采样方法对尾气PM2.5及其碳质组分(有机碳(OC)和元素碳(EC))进行了定量分析。结果显示,2辆国Ⅱ重型柴油货车气态污染物排放因子与负载呈现显著的正相关关系,半载和满载时NOx、CO和THC排放因子相对于空载分别升高18%~41%、6%~67%、37%~125%。但2辆重型柴油货车的PM2.5排放因子并未随负载增加而呈现相同的变化规律。在PM2.5中碳质组分排放约占61%~97%(质量分数),其中EC排放因子随负载的增加而增大。  相似文献   

11.
基于车载式排放测试系统(PEMS),对混合动力轿车进行典型城市道路行驶工况下的排放测试,对比分析实验车辆速度、加速度和比功率区间下的排放特性。混合动力轿车在车速低于50 km/h时,发动机处于关闭状态无排放,温度也下降,会降低NOx排放。主干道上NOx排放最少,快速路上NOx排放较高,高速公路上NOx排放最多。车速超过50km/h时发动机再起动,产生CO和HC排放峰值。主干道上CO和HC排放峰值最频繁,总平均排放因子最高;快速路上排放峰值稀少,总平均排放因子居中;高速公路上没有很大的排放峰值,总平均排放因子最低。  相似文献   

12.
为提高机动车排放清单的精度,对清单的空间分配模型进行优化,在模型复杂度与关联因素分析的基础上,对人口密度、国内生产总值(GDP)、交通兴趣点(POI)、坡度等影响因子进行主成分提取,并结合标准路长,提出了基于主成分综合调解系数的多因子空间分配模型,以济南市为例进行验证,结果显示:济南市2021年机动车碳排放总量为1 259.9万t;基于构建的空间分配模型,获取了济南市1 km×1 km分辨率的网格化机动车碳排放清单;历下区等济南市中心城区是高排放的热点区域,高速公路与一级公路形成高排放的线状地带。基于空间分配模型与基于标准路长的分配结果相比,高排放区碳排放量更高,低排放区碳排放量更低;前者考虑了坡度,对于地形起伏较大地区的分配结果更合理。基于主成分调解系数的多因子空间分配模型提高了网格化排放清单的空间分辨率和分配结果精度。  相似文献   

13.
采集朔州市市区采暖季和非采暖季季PM10样品,测定其中元素碳(EC)和有机碳(OC)含量,并对碳组分的浓度水平、时空分布特征和主要来源进行了研究,结果表明:朔州市市区PM10中OC、EC平均浓度分别为(25.95±9.36)μg/m3和(26.58±10.36)μg/m3,总碳气溶胶(TAC)在PM10中的平均百分含量为30.1%;采暖季OC和EC浓度大于非采暖季,且OC、EC质量浓度大小在5个采样点位均呈现出点位5(工业开发区)点位2(居民区)点位1(商业、居民混合区)点位3(商业、文教混合区)点位4(相对清洁区)的变化规律,其中,点位5的OC、EC质量浓度最大,分别为(29.66±8.72)μg/m3和(31.40±10.42)μg/m3;PM10中OC/EC在采暖季和非采暖季比值均低于2,一次污染严重;OC和EC相关性较好,相关系数(R2)分别为0.85(采暖季)和0.69(非采暖季),说明PM10中的碳气溶胶主要来源于一次排放源,加强对燃煤烟尘、机动车尾气和生物质的燃烧等空气污染来源的控制对于改善朔州市环境空气质量有重要作用。  相似文献   

14.
采用离轴积分腔输出光谱技术分析了夏季和冬季北京市四环路空气中CO_2浓度和δ13C值变化特征。结果表明,四环路上车流量大,夏季和冬季均超过15万辆/d,06:00—10:00和15:00—19:00车行缓慢,平均车速小于25 km/h,车道占有率超过60%。机动车排放出大量的CO_2,导致四环路的空气中CO_2浓度呈双峰曲线日变化和δ~(13)C值呈双波谷曲线日变化。同位素定量区分结果显示,四环路空气中CO_2主要来源于机动车尾气排放,夏季和冬季均在52%以上。逐步回归分析表明,平均车速和车道占有率是影响四环路上CO_2浓度和δ13C值的主要因子。06:00—10:00和15:00—19:00来源于汽车尾气的CO_2比例比整个白天来源于汽车尾气的CO_2比例高出6个百分点以上,表明车行缓慢显著增加了CO_2的排放。  相似文献   

15.
以2015年为基准年,利用COPERT 4模型计算了杭州市分车型分排放标准下的机动车排气污染物(CO、碳氢化合物(HC)、NO_x、PM_(2.5))的排放因子,并估算了各污染物排放量及分车型分排放标准下的各污染物分担率。结果表明,随着排放标准的提升,机动车排气污染物排放因子总体呈现下降的趋势。汽油车的CO和HC排放因子高于柴油车,而柴油车的NO_x和PM_(2.5)排放因子高于汽油车;天然气车的各污染物排放因子基本接近汽油车,而汽油电混动车的各污染物排放因子则明显低于其他动力车;各污染物排放因子随车型的增大(重)而增大。2015年杭州市机动车排气污染物CO、NO_x、HC和PM_(2.5)排放量分别为48 923.0、44 713.7、7 014.7、837.9t,其中汽油车CO和HC分担率较高主要是因为小型汽油客车CO和HC分担率高,并且其保有量占比也高,应重点控制小型汽油客车的保有量;柴油车NOx和PM_(2.5)分担率较高主要是因为重型柴油货车NO_x和PM_(2.5)分担率高,但其保有量占比不高,应重点控制重型柴油货车的排放因子。  相似文献   

16.
为了分析道路环境黑碳浓度变化规律及影响因素,在北京APEC会议期间及前后对道路环境黑碳(BC)、NO_x及PM2.5浓度进行测量,同时调查道路车流信息及气象数据,应用相关性分析、多元线性回归模型和排放强度计算等方法分析了机动车限行和气象条件对路边BC浓度的影响。结果显示:监测期间北土城东路路边的BC平均浓度为7.44μg·m~(-3),限行期间10 d的平均浓度为4.43μg·m(-3),非限行期间21天的平均浓度为8.87μg·m(-3),机动车限行期间BC浓度下降50%。道路环境BC浓度高峰值分别出现在06:00—09:00和18:00—21:00,路边BC浓度与NO_x和PM_(2.5)浓度具有正线性相关性。限行期间总车流量下降52%,重型车辆流量变化不大,由于车流量下降和车速升高机动车尾气BC排放强度降低约15%。多元线性回归模型和情景分析结果显示限行期间气象条件和限行措施对BC浓度下降的贡献率分别为56%和30%,非限行期间如果采取限行措施可以使路边BC浓度下降34%。  相似文献   

17.
利用本地化修正的MOVES模型模拟确定了关中地区不同类型车辆的颗粒物排放因子,结合实地调研的保有量和行驶里程数据测算了该地区的机动车颗粒物年排放总量并从季节、城市、车型和燃油等多个角度详细分析了颗粒物的排放分担率。结果表明:关中地区2012年的机动车颗粒物排放总量分别为PM_(2.5)4.06×1O~3 t,PM_(10)5.52×10_3 t;关中五市一区中西安市的颗粒物排放量最高PM_(2.5)和PM_(10)。排放分別占到该地区的46.53%和48.39%;不同类型车辆中重型货车的排放分担率最高其次为中型货车二者之和占到颗粒物总排放的50%以上;不同燃油车辆中,柴油车的排放分担率远远高于汽油车,是颗粒物的主要贡献者;因此中型和重型柴油货车是关中地区控制颗粒物排放污染的重点车型。  相似文献   

18.
基于机动车排放因子(MOVES)模型和地理信息系统(ArcGIS)技术,建立了西安市2017年分辨率为1km×1km的机动车污染物排放清单。结果显示:2017年西安市机动车污染物PM_(2.5)、PM_(10)、NO_x(NO+NO_2)、NO、NO_2、N_2O和挥发性有机物(VOCs)的年排放总量分别为126.1×10~4、138.2×10~4、2 884.2×10~4、2 577.8×10~4、306.4×10~4、27.9×10~4、1 281.2×10~4 kg;柴油车是PM_(2.5)、PM_(10)和NO_x排放的主要来源,贡献率分别为80.2%、79.5%和75.8%;VOCs和N_2O则主要来自汽油车,贡献率分别为74.2%、89.7%;总体看来,研究区域内不同污染物的空间分布规律相似,这与西安市公路分布有关,PM_(2.5)和NO_x的排放主要集中在主城区及周边县区的高速路和国道,而VOCs的排放主要集中在主城区二环及环内。  相似文献   

19.
机动车排放是城市大气颗粒物(PM)污染的主要来源之一。为改善空气质量,防治PM污染,日本2002年开始实施机动车PM总量控制制度。介绍了日本机动车PM总量控制的内容及对策,并对实施效果进行了分析,总结讨论了其对中国的启示。具体控制对策包括机动车单体对策、交通量及交通需求调整对策和局地污染对策等,并以东京为例介绍严格的柴油车PM排放控制对策。日本实施机动车PM总量控制制度在机动车保有量控制和空气质量改善方面取得明显成效:2002-2012年,日本机动车保有量增长缓慢,货运车总量持续下降,低公害车迅速普及,机动车种类比例不断调整;空气悬浮颗粒(SPM)和PM2.5年均浓度持续下降,其中SPM的机动车监测点下降率达40%。日本机动车PM总量控制制度在制定专门法规、优化交通系统和严控柴油车排放等方面的经验值得中国在制定和实施机动车PM防控措施时学习和借鉴。  相似文献   

20.
在用轻型汽油车排放随行驶里程劣化规律分析   总被引:1,自引:0,他引:1  
基于佛山市3.5万条简易稳态工况(ASM)下的尾气排放检测数据,通过分类统计和线性拟合方法分析在用轻型汽油车的污染物排放浓度随行驶里程的劣化规律。分析结果表明,该地区轻型汽油车污染物排放浓度主要分布于低值区间,超过85%的样本数据低于最低排放限值;车辆排放劣化特征随行驶里程呈规律性变化,行驶里程在0~5万km时污染物排放缓慢增长,5万~16万km时呈快速线性增长,16万km后震荡缓慢增长;行驶里程在16万km前,不同车型的排放特征存在一定差异,其中轻型货车和轻型客车的排放浓度高、劣化速度快;CO、HC、NO随行驶里程的劣化规律可用线性增长模型表示。本研究结论可为预测机动车污染变化趋势、完善在用车检查/维护制度、高排放车辆识别和淘汰等方面提供理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号