首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes results from a pilot study of a novel wastewater treatment technology, which incorporates nutrient removal and solids separation to a single step. The pseudoliquified activated sludge process pilot system was tested on grit removal effluent at flowrates of 29.4 to 54.7 m3/d, three different solid residence times (SRT) (15, 37, and 57 days), and over a temperature range of 12 to 28 degrees C. Despite wide fluctuations in the influent characteristics, the system performed reliably and consistently with respect to organics and total suspended solids (TSS) removals, achieving biochemical oxygen demand (BOD) and TSS reductions of > 96% and approximately 90%, respectively, with BOD5 and TSS concentrations as low as 3 mg/L. Although the system achieved average effluent ammonia concentrations of 2.7 to 3.2 mg/L, nitrification efficiency appeared to be hampered at low temperatures (< 15 degrees C). The system achieved tertiary effluent quality with denitrification efficiencies of 90 and 91% total nitrogen removal efficiency at a total hydraulic retention time of 4.8 hours and an SRT of 12 to 17 days. With ferric chloride addition, effluent phosphorous concentrations of 0.5 to 0.8 mg/L were achieved. Furthermore, because of operation at high biomass concentrations and relatively long biological SRTs, sludge yields were over 50% below typical values for activated sludge plants. The process was modeled using activated sludge model No. 2, as a two-stage system comprised an aerobic activated sludge system followed by an anoxic system. Model predictions for soluble BOD, ammonia, nitrates, and orthophosphates agreed well with experimental data.  相似文献   

2.
Particle size distribution (PSD) analysis was used to evaluate the quality of mixed liquors collected from different activated sludge process modifications (i.e., conventional activated sludge, modified Ludzack-Ettinger, high-purity oxygen, step-anoxic, and oxidation ditch). An experiment protocol was developed to define the allowable sample holding time and provide representative and repeatable results. Samples of 26 treatment plants, with a total of 37 samples, were tested. A new indicator, called mean particle size (MPS), was introduced to describe the integrated mean particle size. The results of MPSs of three cut-off sizes (0.5 to 50, 100, and 200 microm) showed that the average size of mixed-liquor biosolids increased with increasing solids retention time (SRT), and the number of particles in the sedimentation supernatant decreased with increasing SRT. Particle deflocculation occurred after excessive sample holding time, and analysis within 12 hours generally eliminated sample holding problems. The results provide a methodology using PSD for characterizing mixed-liquor biosolids.  相似文献   

3.
A membrane enhanced biological phosphorus removal (MEBPR) process was studied to determine the impact of hydraulic retention time (HRT) and solids retention time (SRT) on the removal of chemical oxygen demand (COD), nitrogen, and phosphorus from municipal wastewater. The MEBPR process was capable of delivering complete nitrification independent of the prevailing operating conditions, whereas a significant improvement in COD removal efficiency was observed at longer SRTs. In the absence of carbon-limiting conditions, the MEBPR process was able to achieve low phosphorus concentrations in the effluent at increasingly higher hydraulic loads, with the lowest HRT being 5 hours. The MEBPR process was also able to maintain optimal phosphorus removal when the SRT was increased from 12 to 20 days. However, at higher suspended solids concentrations, a substantial increase was observed in carbon utilization per unit mass of phosphorus removed from the influent. These results offer critical insights to the application of membrane technology for biological nutrient removal systems.  相似文献   

4.
This study monitors the long term performance of membrane bioreactor (MBR) for the treatment of synthetic municipal wastewater at solid retention time (SRT) of 40 and 20d with particular emphasis on simultaneous nitrification-denitrification (SND). SND was greatly influenced by the operating dissolved oxygen (DO). It was found that at an SRT of 20d, nitrogen removal through assimilation into biomass increases as a result of higher biomass yield. The profile of soluble microbial products (SMP) conformed to a cyclical pattern in the MBR with respect to SRT. Decrease in SRT from 40 to 20d resulted in doubling of accumulated SMP concentration (to 56mgl(-1)) in the MBR. This however, was accompanied by a simultaneous drop in percentage of SMP with MW>100kD, from 42.4% to 33%. Also, the sludge filterability decreased by 24-folds despite a decrease in the biomass concentration, following the above reduction in SRT. It was found that the volumetric oxygen transfer coefficient (K(l)a) was a function of biomass concentration in MBR with the ratio of the oxygen transfer coefficient in mixed liquor to that of clean water (alpha) to be 0.2-0.5.  相似文献   

5.
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.  相似文献   

6.
Over the past decade, several studies have reported trace levels of endocrine disrupting compounds, pharmaceuticals, and personal care products in surface waters, drinking water, and wastewater effluents. There has also been an increased concern about the ecological and human health impact of these contaminants, and their removal from water and wastewater has become a priority. Traditional treatment processes are limited in their ability to remove emerging contaminants from water, and there is a need for new technologies that are effective and feasible. This paper presents a review on recent research results on molecularly imprinted (MIP) and non-imprinted (NIP) polymers and evaluates their potential as a treatment method for the removal of emerging contaminants from water and wastewater. It also discusses the relative benefits and limitations of using MIP or NIP for water and wastewater treatment. MIP, and in particular NIP, offer promising applications for wastewater treatment, but their toxicity and possible health effects should be carefully studied before they are considered for drinking water treatment. More research is also required to determine how best to incorporate MIP and NIP in treatment plants.  相似文献   

7.
Wastewater treatment facilities use secondary treatment to stabilize the effect of discharged effluent on receiving waters by oxidizing biodegradable organic matter and reducing suspended solids and nutrients. The process was never specifically intended to remove trace quantities of xenobiotics, such as endocrine-disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs). Nevertheless, European studies performed at bench-scale or at small facilities have demonstrated that a critical minimum solids retention time (SRT) can achieve good reduction of many EDCs and pharmaceuticals. The objective of this study was to expand these findings to the removal performance for 20 PPCPs commonly found in the influent to full-scale facilities operating in the United States. The participating plants use SRT conditions ranging from 0.5 to 30 days and include facility capacities ranging from 19 000 m3/d (5 mgd) to greater than 1 136 000 m3/d (300 mgd). Two pilot membrane bioreactors were also included in the study. The 20 PPCPs were categorized into nine bin combinations of occurrence frequency and treatment reduction performance. While most compounds were well removed, galaxolide (a musk fragrance) occurred frequently and was resistant to removal. A minimum critical SRT, defined as the minimum SRT, needed to consistently demonstrate greater than 80% removal (SRT80), was compound-dependent, with most compounds removed at 5 to 15 days and a small group requiring longer SRTs. From limited data, no additional removal could be attributed to the use of membrane bioreactors, media filters, or longer hydraulic retention times. Reverse osmosis was effective in removing any remaining compounds.  相似文献   

8.

Electrocoagulation (EC) is an excellent and promising technology in wastewater treatment, as it combines the benefits of coagulation, flotation, and electrochemistry. During the last decade, extensive researches have focused on removal of emerging contaminants by using electrocoagualtion, due to its several advantages like compactness, cost-effectiveness, efficiency, low sludge production, and eco-friendness. Emerging contaminants (ECs) are micropollutants found in trace amounts that discharging into conventional wastewater treatment (WWT) plants entering surface waters and imposing a high threat to human and aquatic life. Various studies reveal that about 90% of emerging contaminants are disposed unscientifically into water bodies, creating problems to public health and environment. The studies on removal of emerging contaminants from wastewater are by global researchers are critically reviewed. The core findings proved that still more research required into optimization of parameters, system design, and economic feasibility to explore the potential of EC combined systems. This review has introduced an innovative collection of current knowledge on electro-coagulation for the removal of emerging contaminants.

Graphical abstract
  相似文献   

9.
Increased anaerobic selector hydraulic retention times (HRTs) in a high-purity oxygen activated sludge process resulted in an increase in soluble orthophosphate release and biodegradable chemical oxygen demand removal, confirming that enhanced biological phosphorus removal occurs at aeration solids retention times (SRTs) below 1.7 days. Under operating conditions that included biological foam trapping and recycling, an anaerobic selector with HRTs higher than 55 minutes resulted in a decrease in filament counts and effective foam control. Effective norcardioform control is achieved through the combination of metabolic selective pressure and increased soluble organic substrate removal in the anaerobic selector and low aeration SRT.  相似文献   

10.
Recuperative thickening of anaerobic digester sludge (thickening with solids return) yields increased digester capacity. Common thickening methods cause oxygen exposure to the digester sludge. This study evaluated the effects of various levels of oxygen exposure on the acetoclastic methanogens. Gravity belt thickening had no detrimental effect on the acetoclastic activity. From a 7-day batch test with continuous oxygen exposure of digester sludge, a 12% loss in acetoclastic activity was predicted for a digester with a 20-day solids retention time (SRT) and 100% recycle with recuperative thickening via dissolved air flotation thickening. However, a greater loss (27%) was found from a long-term, bench-scale digester operated under similar conditions. This loss did not affect the digester performance, as measured by volatile solids destruction. This research suggests that recuperative thickening may not affect digester performance at a long SRT with constant operation, but may change the reserve capacity of the anaerobic community.  相似文献   

11.
Dust collection efficiency data were analyzed to determine better operating conditions for a two-dimensional circulating granular bed filter (CGBF). The dust collection efficiency in the granular bed was affected by the following operating parameters: the louver angle, the solids mass flow rate, and the particle size of the bed material. Experimental results showed that higher dust collection efficiency occurs when the solids mass flow rates were 20.34 +/- 0.24, 21.50 +/- 0.11, and 30.51 +/- 0.57 g/sec at louver angles of 45 degrees, 30 degrees, and 20 degrees, respectively. Optimal dust collection efficiency peaked with a louver angle of 30 degrees. Average particle sizes of bed material by sieve diameters (microm) of 795 microm had higher dust collection efficiency than the average collector particle size of 1500 microm. Dust collection efficiency is influenced by bed material attrition phenomenon, causing dust collection efficiency to decrease rapidly. The dust collection efficiency analysis not only found the system free of design defects but also assisted in the operation of the two-dimensional CGBF system.  相似文献   

12.
The removal of particulate material in the aeration basin of the activated sludge process is mainly attributed to bioflocculation and hydrolysis of particulate substrate. The bioflocculation process in the aeration tank of the activated sludge process occurs only under favorable conditions in the system, and several common operational parameters affect its performance. The principal objective of this research was to observe the effect of mixed liquor suspended solids, solids retention time (SRT), and extracellular polymer substances on the removal of particulate substrate by bioflocculation. A first-order particulate removal expression, based on flocculation, accurately described the removal rates for supernatant suspended solids and colloidal chemical oxygen demand. Based on the results presented in this investigation, a mixed liquor concentration of approximately 2200 mg/L, an SRT of at least 3 days, and a contact time of 30 minutes are needed for relatively complete removal of the particulate substrate in a plug-flow reactor.  相似文献   

13.
Abstract

Dust collection efficiency data were analyzed to determine better operating conditions for a two-dimensional circulating granular bed filter (CGBF). The dust collection efficiency in the granular bed was affected by the following operating parameters: the louver angle, the solids mass flow rate, and the particle size of the bed material. Experimental results showed that higher dust collection efficiency occurs when the solids mass flow rates were 20.34 ± 0.24, 21.50 ± 0.11, and 30.51 ± 0.57 g/sec at louver angles of 45°, 30°, and 20°, respectively. Optimal dust collection efficiency peaked with a louver angle of 30°. Average particle sizes of bed material by sieve diameters (μm) of 795 μm had higher dust collection efficiency than the average collector particle size of 1500 μm. Dust collection efficiency is influenced by bed material attrition phenomenon, causing dust collection efficiency to decrease rapidly. The dust collection efficiency analysis not only found the system free of design defects but also assisted in the operation of the two-dimensional CGBF system.  相似文献   

14.
The overall objective of this research was to investigate various methods and parameters to increase the efficiency of chemically enhanced primary treatment (CEPT). The performance of CEPT was evaluated based on its efficiency of removal of nonsettleable solids (NSS). Some of the source characteristics that influenced NSS concentration included influent total suspended solids, influent turbidity, and influent total chemical oxygen demand. A higher concentration of the influent constituents led to a higher NSS concentration, suggesting that NSS represented a somewhat fixed fraction or percent of these influent constituents. The specific particle surface area (SPSA) was found to correlate with percent NSS in the effluent. A higher SPSA is a result of smaller-sized nonsettleable colloidal particles, thus leading to an increase in percent NSS. In summary, there are several parameters that affect NSS, which could be used to control NSS to improve CEPT, as demonstrated by this study.  相似文献   

15.
大坦沙污水厂承接粪便污水的脱氮除磷研究   总被引:2,自引:0,他引:2  
广州市大坦沙污水处理厂采用A2/O工艺,合并处理城市生活污水和粪便污水,由于粪便污水的污染物含量高和水量不稳定等特点,对水厂的运行有不利的影响。实践表明:通过控制好氧池溶解氧、延长好氧段的水力停留时间、增大回流比和提高MLSS与污泥龄等措施,该厂取得较好的脱氮除磷效果,实现出水COD、总氮、氨氮和总磷达标排放。  相似文献   

16.
The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper–lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation.  相似文献   

17.
The simultaneous removal of organic and nitrogen and molecular weight distribution (MWD) of residual soluble chemical oxygen demand (RSCOD) in final effluent were investigated using entrapped mixed microbial cells (EMMC) and conventional activated sludge processes. Two different types of processes using EMMC carriers demonstrated better organic and nitrogen removal performance because of the high solids retention time (SRT) compared with the activated sludge process. Regarding the RSCOD, the longer SRT process (EMMC) was affected by reducing the hydraulic retention time, resulting in the increase of high-molecular-weight materials. On the other hand, reducing the aeration period had significantly affected the MWD in the shorter SRT process (activated sludge), resulting in an increase of low-molecular-weight materials.  相似文献   

18.
The sites contaminated with recalcitrant organic compounds, such as polycyclic aromatic hydrocarbons (PAHs) with multiple benzene rings, are colossal and ubiquitous environmental problems. They are relatively nonbiodegradable and mutagenic, and 16 of them are listed in the U.S. Environment Protection Agency priority pollutants. Thus, the efficient and emerging remediation technologies for removal of PAHs in contaminated sites have to be uncovered urgently. In this decade, the zero-valent iron (ZVI) particles have been used successfully in the laboratory, pilot, and field, such as degradation of chlorinated hydrocarbons and remediation of the other pollutants. Nevertheless, as far as we know, little research has investigated for soil remediation; this study used nanoscale ZVI particles to remove pyrene in the soil. The experimental variables were determined, including reaction time, iron particle size, and dosage. From the results, both the micro- and nanoscales of ZVI were capable of removing the target compound in soil, but the higher removal efficiencies were by nanoscale ZVI because of the massive specific surface area. The optimal operating conditions to attain the best removal efficiency of pyrene were obtained while adding nanoscale ZVI 0.1 g/g soil within 60 min and 150 rpm of mixing. Thus, nanoscale ZVI has proved to be a promising remedy for PAH-contaminated soil in this study, as well as an optimistically predictable application for additional pilot and field studies.  相似文献   

19.
Electrokinetic-enhanced phytoremediation of soils: Status and opportunities   总被引:2,自引:0,他引:2  
Phytoremediation is a sustainable process in which green plants are used for the removal or elimination of contaminants in soils. Both organic and inorganic contaminants can be removed or degraded by growing plants by several mechanisms, namely phytoaccumulation, phytostabilization, phytodegradation, rhizofiltration and rhizodegradation. Phytoremediation has several advantages: it can be applied in situ over large areas, the cost is low, and the soil does not undergo significant damages. However, the restoration of a contaminated site by phytoremediation requires a long treatment time since the remediation depends on the growth and the biological cycles of the plant. It is only applicable for shallow depths within the reach of the roots, and the remediation efficiency largely depends on the physico-chemical properties of the soil and the bioavailability of the contaminants. The combination of phytoremediation and electrokinetics has been proposed in an attempt to avoid, in part, the limitations of phytoremediation. Basically, the coupled phytoremediation–electrokinetic technology consists of the application of a low intensity electric field to the contaminated soil in the vicinity of growing plants. The electric field may enhance the removal of the contaminants by increasing the bioavailability of the contaminants. Variables that affect the coupled technology are: the use of AC or DC current, voltage level and mode of voltage application (continuous or periodic), soil pH evolution, and the addition of facilitating agents to enhance the mobility and bioavailability of the contaminants. Several technical and practical challenges still remain that must be overcome through future research for successful application of this coupled technology at actual field sites.  相似文献   

20.
Environmental Science and Pollution Research - Activated carbon (AC) can be used for the removal of emerging contaminants (e.g., drugs) in water and wastewater treatment plants. In the present...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号