首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil   总被引:20,自引:0,他引:20  
Chang BV  Shiung LC  Yuan SY 《Chemosphere》2002,48(7):717-724
Known concentrations of phenanthrene, pyrene, anthracene, fluorene and acenapthene were added to soil samples to investigate the anaerobic degradation potential of polycyclic aromatic hydrocarbon (PAH). Consortia-treated river sediments taken from known sites of long-term pollution were added as inoculum. Mixtures of soil, consortia, and PAH (individually or combined) were amended with nutrients and batch incubated. High-to-low degradation rates for both soil types were phenanthrene > pyrene > anthracene > fluorene > acenaphthene. Degradation rates were faster in Taida soil than in Guishan soil. Faster individual PAH degradation rates were also observed in cultures containing a mixture of PAH substrates compared to the presence of a single substrate. Optimal incubation conditions were noted as pH 8.0 and 30 degrees C. Degradation was enhanced for PAH by the addition of acetate, lactate, or pyruvate. The addition of municipal sewage or oil refinery sludge to the soil samples stimulated PAH degradation. Biodegradation was also measured under three anaerobic conditions; results show the high-to-low order of biodegradation rates to be sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the PAH degradation; sulfate-reducing bacteria constitute a major component of the PAH-adapted consortia.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Concentrations of biphenyl, fluorene, phenanthrene and pyrene were added to soil samples in order to investigate the anaerobic degradation potential of PAHs under denitrifying conditions. A mixed population of microorganisms obtained from a paddy soil was incubated for 20 days in anaerobic conditions in the presence of soil alone or with nitrate, adding, as electron donors, PAHs and, in some samples, glucose or acetate. At regular time intervals oxidation-reduction potential, PAHs concentration, microbial ATP and nitrate concentration into the solution were measured. Degradation trends for each hydrocarbon are similar under all conditions, indicating that the molecular conformation prevails over other parameters in controlling the degradation. Poor degradation results were obtained when PAHs were the only organic matter available for the inoculum, thus confirming the recalcitrance to degradation of these compounds. Biodegradation was influenced by the addition of other carbon sources. As better degradation results were generally obtained when acetate or glucose were added, the hypothesis of a co-metabolic enhancement of PAH biodegradation seems likely. Thus, anaerobic biodegradation of PAHs studied, biphenyl, fluorene, phenanthrene and pyrene, seems to be possible both through fermentative and respiratory metabolism, provided that low molecular weight co-metabolites and suitable electron acceptors (nitrate) are present.  相似文献   

3.
回顾了硝基芳香化合物和偶氮化合物在厌氧条件下的生物脱毒、转化和矿化作用的研究成果。这些研究表明 ,由于硝基和偶氮基具有强烈的吸电子性 ,好氧条件下很难降解。但是 ,硝基和偶氮基芳香化合物在产甲烷菌群作用下较易还原脱毒 ,转化为相应的芳香胺类 ,其毒性要小几个数量级 ,因而有些毒性很高的芳香化合物废水可利用厌氧反应器处理 ,而且反应过程中发现一些芳香胺类化合物可被完全矿化 ,表明一些含氮芳香化合物可作为厌氧菌的碳源和能源 ,在厌氧条件下被完全生物降解。  相似文献   

4.
Natural estrogens such as estrone, 17β-estradiol, estriol, and the particularly recalcitrant synthetic estrogen 17α-ethinylestradiol used as oral contraceptive, accumulate in the environment and may give rise to health problems. The processes participating in their removal from soil, wastewater, water-sediments, groundwater-aquifer material, and wastewater or sewage treatment plant effluents may involve the action of bacterial and microbial consortia, and in some cases fungi and algae. This review discusses the different efficiencies of bacterial degradation of 17α-ethinylestradiol under aerobic and anaerobic conditions, the role of sulfate-, nitrate-, and iron-reducing conditions in anaerobic degradation, and the role of sorption. The participation of autotrophic ammonia oxidizing bacteria and heterotrophic bacteria in cometabolic degradation of estrogens, the estrogen-degrading action of ligninolytic fungi and their extracellular enzymes (lignin peroxidase, manganese-dependent peroxidase, versatile peroxidase, laccase), and of algae are discussed in detail.  相似文献   

5.
同分异构体喹啉和异喹啉的缺氧降解性能比较   总被引:3,自引:0,他引:3  
研究了同分异构体的含氮杂环化合物喹啉和异喹啉在缺氧条件下的降解情况,发现两者表现出不同的缺氧降解特性。喹啉可以在缺氧条件下得到有效降解,其缺氧降解的最佳碳氮比为8。在最佳碳氮比条件下,喹啉的缺氧降解过程符合一级动力学规律,在其降解过程中首先以硝酸盐为电子受体,当硝酸盐氮浓度为零时,亚硝酸盐氮浓度达到最高,此后喹啉的降解主要以亚硝酸盐为电子受体,并和亚硝酸盐氮同时达到最低浓度。异喹啉对硝酸盐的利用甚微,其降解主要表现为厌氧降解特征,降解过程符合零级动力学规律。  相似文献   

6.
Changes in bioavailability of pyrene in three uncontaminated soils were examined under aerobic and anaerobic conditions. Three soils were aerobically aged with pyrene and [(14)C]pyrene for 63 days, then incubated with water, nitrate, or sulfate under aerobic or anaerobic conditions for one year. Under aerobic conditions, microorganisms in two soils mineralized 58-82% of the added [(14)C]pyrene. The two soils amended with nitrate were seen to have enhanced aerobic mineralization rates. In one of these soils, non-extractable pyrene was seen to decrease over the course of the study due to desorption and mineralization, nitrate amendment enhanced this effect. Under anaerobic conditions, generated with a N(2):CO(2)(g) headspace, two soils with nitrate or sulfate amendment showed an increase in extractable [(14)C]pyrene at 365 days relative to inhibited controls, presumably due to microbially mediated oxidation-reduction potential and pH alteration of the soil environment. These observations in different soils incubated under aerobic and anaerobic conditions have important implications relative to the impact of microbial electron acceptors on bioavailability and transport of non-polar organic compounds in the environment suggesting that, given enough time, under the appropriate environmental conditions, non-extractable material becomes bioavailable. This information should be considered when assessing site specific exposure risks at PAH contaminated locations.  相似文献   

7.
苯酚的生物降解一直受到关注。以苯酚为惟一电子供体,研究了Shewanellasp.XB对苯酚的缺氧降解特性。研究结果表明,在反硝化条件下,当C/N为13.3时,苯酚可以完全降解,NO2--N积累量很少。另外,当加入氧化还原介体,如核黄素3μmol/L、AQDS0.01mmol/L、AQS0.05mmol/L和LQ0.01mmol/L时,苯酚降解速率分别为不加介体时的1.45、1.77、1.67和1.63倍。当以氯化铵代替硝酸盐时,苯酚也能进行厌氧发酵降解。另外,菌株XB反硝化降解苯酚可能是厌氧和好氧降解的混合过程。  相似文献   

8.
Triclosan is an antimicrobial agent which is widely used in household and personal care products. Widespread use of this compound has led to the elevated concentrations of triclosan in wastewater, wastewater treatment plants (WWTPs) and receiving waters. Removal of triclosan and formation of triclosan-methyl was investigated in activated sludge from a standard activated sludge WWTP equipped with enhanced biological phosphorus removal. The removal was found to occur mainly under aerobic conditions while under anoxic (nitrate reducing) and anaerobic conditions rather low removal rates were determined. In a laboratory-scale activated sludge reactor 75% of the triclosan was removed under aerobic conditions within 150 h, while no removal was observed under anaerobic or anoxic conditions. One percent of the triclosan was converted to triclosan-methyl under aerobic conditions, less under anoxic (nitrate reducing) and none under anaerobic conditions.  相似文献   

9.
Zhuang L  Gui L  Gillham RW 《Chemosphere》2012,89(7):810-816
This study examined the role of denitrifying and sulfate-reducing bacteria in biodegradation of pentaerythritol tetranitrate (PETN). Microbial inocula were obtained from a PETN-contaminated soil. PETN degradation was evaluated using nitrate and/or sulfate as electron acceptors and acetate as a carbon source. Results showed that under different electron acceptor conditions tested, PETN was sequentially reduced to pentaerythritol via the intermediary formation of tri-, di- and mononitrate pentaerythritol (PETriN, PEDN and PEMN). The addition of nitrate enhanced the degradation rate of PETN by stimulating greater microbial activity and growth of nitrite reducing bacteria that were responsible for degrading PETN. However, a high concentration of nitrite (350 mg L−1) accumulated from nitrate reduction, consequently caused self-inhibition and temporarily delayed PETN biodegradation. In contrast, PETN degraded at very similar rates in the presence and absence of sulfate, while PETN inhibited sulfate reduction. It is apparent that denitrifying bacteria possessing nitrite reductase were capable of using PETN and its intermediates as terminal electron acceptors in a preferential utilization sequence of PETN, PETriN, PEDN and PEMN, while sulfate-reducing bacteria were not involved in PETN biodegradation. This study demonstrated that under anaerobic conditions and with sufficient carbon source, PETN can be effectively biotransformed by indigenous denitrifying bacteria, providing a viable means of treatment for PETN-containing wastewaters and PETN-contaminated soils.  相似文献   

10.
The effect of soil redox conditions on the degradation of metolachlor and metribuzin in two Mississippi soils (Forrestdale silty clay loam and Loring silt loam) were examined in the laboratory. Herbicides were added to soil in microcosms and incubated either under oxidized (aerobic) or reduced (anaerobic) conditions. Metolachlor and metribuzin degradation under aerobic condition in the Forrestdale soil proceeded at rates of 8.83 ngd(-1) and 25 ngd(-1), respectively. Anaerobic degradation rates for the two herbicides in the Forestdale soil were 8.44 ngd(-1) and 32.5 ngd(-1), respectively. Degradation rates for the Loring soil under aerobic condition were 24.8 ngd(-1) and 12.0 ngd(-1) for metolachlor and metribuzin, respectively. Metolachlor and metribuzin degradation rates under anaerobic conditions in the Loring soil were 20.9 ngd(-1) and 5.35 ngd(-1). Metribuzin degraded faster (12.0 ngd(-1)) in the Loring soil under aerobic conditions as compared to anaerobic conditions (5.35 ngd(-1)).  相似文献   

11.
The aim of this work was to elucidate the role of nitrate as a terminal electron acceptor on the biodegradation of NPEO. We have characterized the products of NPEO degradation by mixed microbial communities in anaerobic batch tests by means of HPLC, 1H NMR and GC–MS. Anaerobic degradation of NPEO was strictly dependent on the presence of nitrate. Within seven days of anoxic incubation, NP2EO appeared as the major degradation product. After 21 days, NP was the main species detected, and was not degraded further even after 35 days. Nitrate concentration decreased in parallel with NPEO de-ethoxylation. A transient accumulation of nitrite was observed within the time period in which NP formation reached its maximum production. The observed generation of nonylphenol coupled to nitrate reduction suggests that the microbial consortium possessed an alternate pathway for the degradation of NPEO, which was not accessible under aerobic conditions.  相似文献   

12.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   

13.
The rate and extent of biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) in ground-water was studied in samples from a contaminated site which contained total BTEX concentrations of up to 20 000 microg litre(-1). All compounds were rapidly degraded under natural aerobic conditions. Elevation of incubation temperature, supply of organic nutrients or addition of inorganic fertiliser did not increase the rate or extent of biodegradation and it appeared that oxygen supply was the factor limiting BTEX degradation at this site. Attempts to increase the dissolved oxygen concentration in the ground-water by the addition of hydrogen peroxide to give a final concentration of 200 mg litre(-1) resulted in the complete inhibition of biodegradation. No biodegradation occurred under anaerobic conditions except when nitrate was provided as a terminal electron acceptor for microbial respiration. Under denitrifying conditions there was apparent biodegradation of benzene, toluene, ethyl-benzene, m-xylene and p-xylene but o-xylene was not degraded. Degradation under denitrifying conditions occurred at a much slower rate than under oxygenated conditions.  相似文献   

14.
The biodegradation of phenols (5, 60, 600 mg l−1) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an aquifer. The aqueous phase was sampled and analyzed for phenols and selected redox sensitive parameters on a regular basis. An experiment with sandstone material from specific depth intervals from a vertical profile across the ammonium plume was also conducted. The miniature microcosms used in this experiment were sacrificed for sampling for phenols and selected redox sensitive parameters at the end of the experiment. The sandstone material was characterized with respect to oxidation and reduction potential and Fe(II) and Fe(III) speciation prior to use for all microcosms and at the end of the experiments for selected microcosms.The redox conditions in the anaerobic microcosms were mixed nitrate and Fe(III) reducing. Nitrate and Fe(III) were apparently the dominant electron acceptors at high and low nitrate concentrations, respectively. When biomass growth is taken into account, nitrate and Fe(III) reduction constituted sufficient electron acceptor capacity for the mineralization of the phenols observed to be degraded even at an initial phenols concentration of 60 mg l−1 (high) in an unamended microcosm, whereas nitrate reduction alone is unlikely to have provided sufficient electron acceptor capacity for the observed degradation of the phenols in the unamended microcosm.For microcosm systems, with solid aquifer materials, dissolution of organic substances from the solid material may occur. A quantitative determination of the speciation (mineral types and quantity) of electron acceptors associated with the solids, at levels relevant for degradation of specific organic compounds in aquifers, cannot always be obtained. Hence, complete mass balances of electron acceptor consumption for specific organic compounds degradation are difficult to confine. For aquifer materials with low initial Fe(II) content, Fe(II) determinations on solids and in aqueous phase samples may provide valuable information on Fe(III) reduction. However, in microcosms with natural sediments and where electron acceptors are associated with the sediments, complete mass-balances for substrates and electron acceptors are not likely to be obtained.  相似文献   

15.
Bae HS  Yamagishi T  Suwa Y 《Chemosphere》2004,55(1):93-100
An anaerobic continuous-flow fixed-bed column reactor capable of degrading 3-chlorobenzoate (3-CBA) under denitrifying conditions was established, and its rate reached 2.26 mM d(-1). The denitrifying population completely degraded 3-CBA when supplied at 0.1-0.54 mM, but its activity was partly suppressed when 3-CBA was supplied at 0.89 mM. Nitrate was concomitantly consumed throughout the operation of the reactor, the amount of which was similar to or up to 35% higher than the theoretical stoichiometric value that was calculated by assuming that 3-CBA degradation is coupled with denitrification. Batch incubation experiments proved that nitrate is strictly required for 3-CBA degradation in the absence of molecular oxygen. The population also degraded 3-CBA aerobically. Benzoate and 4-CBA were degraded under denitrifying conditions as well as 3-CBA, but 2-CBA was not. Considering that the previously reported denitrifying 3-CBA-degrading cultures do not exhibit 4-CBA degradation under denitrifying conditions, nor aerobic 3-CBA degradation [FEMS Microbiol. Lett. 144 (1996) 213, Appl. Environ. Microbiol. 66 (2000) 3446], the microbial population developed in this experiment was physiologically versatile with respect to the utilization of both electron donors and electron acceptors.  相似文献   

16.
Investigation of a groundwater plume containing up to 24 g l(-1) phenolic compounds suggested that over a period of nearly 50 years, little degradation had occurred despite the presence of a microbial community and electron acceptors within the core of the plume. In order to study the effect of contaminant concentration on degradation behaviour, laboratory microcosm experiments were performed under aerobic and anaerobic conditions at four different concentrations obtained by diluting contaminated with uncontaminated groundwater. The microcosms contained groundwater with total phenols at ca. 200, 250, 660 and 5000 mg l(-1), and aquifer sediment that had been acclimatised within the plume for several months. The microcosms were operated for a period of 390-400 days along with sterile controls to ascertain whether degradation was microbially mediated or abiotic. Under aerobic conditions, degradation only occurred at concentrations up to 660 mg l(-1) total phenols. At phenol concentrations below 250 mg l(-1) a benzoquinone intermediate, thought to originate from the degradation of 2,5-dimethylphenol, was isolated and identified. This suggested an unusual degradative pathway for this compound; its aerobic degradation more commonly proceeding via catecholic intermediates. Under anaerobic conditions, degradation only occurred in the most dilute microcosm (total phenols 195 mg l(-1)) with a loss of p-cresol accompanied by a nonstoichiometric decrease in nitrate and sulphate. By inference, iron(III) from the sediment may also have been used as a terminal electron acceptor, in which case the amount of biologically available iron released was calculated as 1.07 mg Fe(III)/g of sediment. The study shows that natural attenuation is likely to be stimulated by dilution of the plume.  相似文献   

17.
Hofmann K  Hammer E 《Chemosphere》1999,38(11):2561-2568
Relatively high concentrations of phenol, p-cresol, phenylacetic acid and other aromatic compounds were found in agricultural and communal sewage deposits. These toxic aromatic compounds are products of the bacterial degradation of aromatic amino acids under anaerobic conditions. In laboratory experiments at 26 degrees C and under N2-atmosphere, the same aromatics were formed from the amino acid tyrosine and from gelatine in assays inoculated with sewage sludge. After exhaustion of tyrosine and gelatine, respectively, concentrations of the accumulated phenol and other aromatics remained stable for months, i.e., phenol, p-cresol, phenylacetic acid etc. are dead-end products of the bacterial metabolism under these conditions. After addition of sodium nitrate the aromatic compounds are metabolically decomposed by denitrification within weeks.  相似文献   

18.
Abstract

The effect of soil redox conditions on the degradation of metolachlor and metribuzin in two Mississippi soils (Forrestdale silty clay loam and Loring silt loam) were examined in the laboratory. Herbicides were added to soil in microcosms and incubated either under oxidized (aerobic) or reduced (anaerobic) conditions. Metolachlor and metribuzin degradation under aerobic condition in the Forrestdale soil proceeded at rates of 8.83 ngd‐1 and 25 ngd‐1, respectively. Anaerobic degradation rates for the two herbicides in the Forestdale soil were 8.44 ngd‐1 and 32.5 ngd‐1, respectively. Degradation rates for the Loring soil under aerobic condition were 24.8 ngd‐1 and 12.0 ngd‐1 for metolachlor and metribuzin, respectively. Metolachlor and metribuzin degradation rates under anaerobic conditions in the Loring soil were 20.9 ngd‐1 and 5.35 ngd‐1. Metribuzin degraded faster (12.0 ngd‐1) in the Loring soil under aerobic conditions as compared to anaerobic conditions (5.35 ngd‐1).  相似文献   

19.
Yang S  Yoshida N  Baba D  Katayama A 《Chemosphere》2008,71(2):328-336
The anaerobic degradation of biphenyl was investigated in four uncontaminated Japanese paddy soils and one river sediment sample contaminated with benzene and chlorinated aliphatics. Two of the paddy soils and the sediment were capable of degrading biphenyl anaerobically without any additional medium or electron acceptors. The half-lives of biphenyl biodegradation in the three samples were 212 d in the Kuridashi soil, 327 d in the Kamajima soil, and 429 d in the river sediment. The Kuridashi soil metabolized 1+/-0.3% of [U-14C]-biphenyl into CO2 and 5+/-2% into water-soluble metabolites after 45 d of incubation. Submerged conditions, which result in lower nitrate and iron oxide contents, and neutral pH, appeared to be the common properties among the samples that influenced their degradation capacities. The addition of 10mM sulfate and 20mM Fe(III) as electron acceptors did not enhance the biphenyl degradation rate, whereas 10mM nitrate completely inhibited biphenyl degradation. The addition of different electron donors (lactate, acetate, or pyruvate) slightly slowed the degradation. Molybdate (an inhibitor of sulfate-reducing bacteria) had an inhibitory effect on biphenyl biodegradation, but bromoethanesulfonic acid (an inhibitor of methanogens) did not. Most biphenyl degradation was observed when only water was added, with no other electron acceptors or donors. These results suggest that sulfate-reducing bacteria and fermentative microbial populations play important roles in anaerobic biphenyl biodegradation in paddy soil.  相似文献   

20.
Background, Aims and Scope It is well known that the composition of petroleum or some of its processing products changes in the environment mostly under the influence of microorganisms. A series of experiments was conducted in order to define the optimum conditions for an efficient biodegradation of petroleum pollutant, or bioremediation of different segments of the environment. The aim of these investigations was to show to what extent the hydrocarbons of a petroleum pollutant are degraded by microbial cultures which were isolated as dominant microorganisms from a surface water of a wastewater canal of an oil refinery and a nitrogen plant. Biodegradation experiments were conducted on one paraffinic, and one naphthenic type of petroleum during a three month period under aerobic conditions, varying the following parameters: Inorganic (Kp) or an organic medium (Bh) with or without exposition to light. Methods Microorganisms were analyzed in a surface water sample from a canal (Pančevo, Serbia), into which wastewater from an oil refinery and a nitrogen plant is released. The consortia of microorganisms were isolated from the water sample (most abundant species: Phormidium foveolarum - filamentous Cyanobacteria, blue-green algae and Achanthes minutissima, diatoms, algae). The simulation experiments of biodegradation were conducted with the biomass suspension and crude oils Sirakovo (Sir, paraffinic type) and Velebit (Ve, naphthenic type). After a three month period, organic substance was extracted by means of chloroform. In the extracts, the content of saturated hydrocarbons, aromatic hydrocarbons, alcohols and fatty acids was determined (the group composition). n-Alkanes and isoprenoid aliphatic alkanes, pristane and phytane, in the aliphatic fractions, were analyzed using gas chromatography (GC). Total isoprenoid aliphatic alkanes and polycyclic alkanes of sterane and triterpane types were analyzed by GC-MS. Results and discussion. Paraffinic type petroleums have a significant loss of saturated hydrocarbons. For naphthenic type petroleum, such a trend has not been observed. The most intensive degradation of n-alkanes and isoprenoid aliphatic alkanes (in paraffinic oil) and isoprenoids (in naphthenic oil) was observed using the inorganic medium Kp in the light; the microbial conversion is somewhat lower with Kp in the dark; with organic medium Bh in the light the degradation is of low intensity; with the same medium in the dark the degradation is hardly to be seen. Steranes and triterpanes were not affected by microbial degradation under the conditions used in our experiments. Obviously, the petroleum biodegradation was restricted to the acyclic aliphatics (n-alkanes and isoprenoids). Conclusion Phormidium foveolarum (filamentous Cyanobacteria - blue-green algae) and Achanthes minutissima (diatoms, algae), microbial cultures isolated as dominant algae from a surface water in a wastewater canal of an oil refinery and a nitrogen plant, have degradable effects dominantly involving petroleum hydocarbons. Petroleum microbiological degradation is more intensive when inorganic medium (in the light) is applied. Having in mind that the inorganic pollutants have been released into the canal as well, this medium reflects more the natural environmental conditions. Polycyclic alkanes of sterane and triterpane type, in spite of the fact that these compounds could be degraded, have remained unchanged regarding abundance and distribution. Since this is the case even for naphthenic type petroleum (which is depleted in n-alkanes), it can be concluded that the biodegradation of petroleum type pollutants, under natural conditions, will be restrained to the n-alkane and isoprenoid degradation. Recommendation and Outlook Performed experiments and simulations of petroleum microbiological degradation may serve for the prediction of the fate of petroleum type pollutants, as well as for definition of conditions for bioremediation of some environmental segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号