首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 957 毫秒
1.
The potential environmental impact of air pollutants emitted from the oil sands industry in Alberta, Canada, has received considerable attention. The mining and processing of bitumen to produce synthetic crude oil, and the waste products associated with this activity, lead to significant emissions of gaseous and particle air pollutants. Deposition of pollutants occurs locally (i.e., near the sources) and also potentially at distances downwind, depending upon each pollutant’s chemical and physical properties and meteorological conditions. The Joint Oil Sands Monitoring Program (JOSM) was initiated in 2012 by the Government of Canada and the Province of Alberta to enhance or improve monitoring of pollutants and their potential impacts. In support of JOSM, Environment and Climate Change Canada (ECCC) undertook a significant research effort via three components: the Air, Water, and Wildlife components, which were implemented to better estimate baseline conditions related to levels of pollutants in the air and water, amounts of deposition, and exposures experienced by the biota. The criteria air contaminants (e.g., nitrogen oxides [NOx], sulfur dioxide [SO2], volatile organic compounds [VOCs], particulate matter with an aerodynamic diameter <2.5 μm [PM2.5]) and their secondary atmospheric products were of interest, as well as toxic compounds, particularly polycyclic aromatic compounds (PACs), trace metals, and mercury (Hg). This critical review discusses the challenges of assessing ecosystem impacts and summarizes the major results of these efforts through approximately 2018. Focus is on the emissions to the air and the findings from the Air Component of the ECCC research and linkages to observations of contaminant levels in the surface waters in the region, in aquatic species, as well as in terrestrial and avian species. The existing evidence of impact on these species is briefly discussed, as is the potential for some of them to serve as sentinel species for the ongoing monitoring needed to better understand potential effects, their potential causes, and to detect future changes. Quantification of the atmospheric emissions of multiple pollutants needs to be improved, as does an understanding of the processes influencing fugitive emissions and local and regional deposition patterns. The influence of multiple stressors on biota exposure and response, from natural bitumen and forest fires to climate change, complicates the current ability to attribute effects to air emissions from the industry. However, there is growing evidence of the impact of current levels of PACs on some species, pointing to the need to improve the ability to predict PAC exposures and the key emission source involved. Although this critical review attempts to integrate some of the findings across the components, in terms of ECCC activities, increased coordination or integration of air, water, and wildlife research would enhance deeper scientific understanding. Improved understanding is needed in order to guide the development of long-term monitoring strategies that could most efficiently inform a future adaptive management approach to oil sands environmental monitoring and prevention of impacts.

Implications: Quantification of atmospheric emissions for multiple pollutants needs to be improved, and reporting mechanisms and standards could be adapted to facilitate such improvements, including periodic validation, particularly where uncertainties are the largest. Understanding of baseline conditions in the air, water and biota has improved significantly; ongoing enhanced monitoring, building on this progress, will help improve ecosystem protection measures in the oil sands region. Sentinel species have been identified that could be used to identify and characterize potential impacts of wildlife exposure, both locally and regionally. Polycyclic aromatic compounds are identified as having an impact on aquatic and terrestrial wildlife at current concentration levels although the significance of these impacts and attribution to emissions from oil sands development requires further assessment. Given the improvement in high resolution air quality prediction models, these should be a valuable tool to future environmental assessments and cumulative environment impact assessments.  相似文献   


2.
Air pollution and health studies in China--policy implications   总被引:1,自引:0,他引:1  
During the rapid economic development in China, ambient air pollutants in major cities, including PM10 (particulate matter with aerodynamic diameter < or =10 microm) and SO2 have been reduced due to various measures taken to reduce or control sources of emissions, whereas NO2 is stable or slightly increased. However, air pollution levels in China are still at the higher end of the world level. Less information is available regarding changes in national levels of other pollutants such as PM2.5 and ozone. The Chinese Ministry of Environmental Protection (MOEP) set an index for "controlling/reducing total SO2 emissions" to evaluate the efficacy of air pollution control strategy in the country. Total SO2 emissions declined for the first time in 2007. Chinese epidemiologic studies evidenced adverse health effects of ambient air pollution similar to those reported from developed countries, though risk estimates on mortality/morbidity per unit increase of air pollutant are somewhat smaller than those reported in developed countries. Disease burden on health attributable to air pollution is relatively greater in China because of higher pollution levels. Improving ambient air quality has substantial and measurable public health benefits in China. It is recommended that the current Chinese air quality standards be updated/revised and the target for "controlling/reducing total SO2 emissions" be maintained and another target for "reducing total NO2 emissions" be added in view of rapid increase in motor vehicles. Continuous and persistent efforts should be taken to improve ambient air quality.  相似文献   

3.
The Framework Directive (FWD) and the proposed Daughter Directives are the newest legislative instruments concerning a new political strategy and air quality management approach for Europe. Additionally, the member countries of the United Nations Economic Commission for Europe have included the concepts of critical load and level for planning air pollution abatement strategies and as a base of international agreements concerning limitation of the emissions of air pollutants. These concepts imply an accurate knowledge about pollutants deposition fluxes. The paper describes the main needs and the tools available to define a strategy of air quality management in Portugal. Two study cases are presented: (1) extensive monitoring plan to assess the impact of an urban incinerator plant; and (2) contribution to a methodology to estimate critical levels for a coastal region in Portugal. These different approaches allowed illustrating the complexity of the implementation of an air pollution management strategy.  相似文献   

4.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   

5.
Evaluating sources of indoor air pollution   总被引:2,自引:0,他引:2  
Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on "sink" surfaces.  相似文献   

6.
Changes over recent decades in outdoor concentrations of air pollutants are well documented. However, the impacts of air pollution on an individual's health actually relate not to these outdoor concentrations but to their personal exposure in the different locations in which they spend time. Assessing how personal exposures differ from outdoor concentrations, and how they have changed over recent decades, is challenging. This review focuses on the exposure of children, since they are a particularly sensitive group. Much of children's time is spent indoors, and childhood exposure is closely related to concentrations in the home, at school, and in transport. For this reason, children's personal exposures to air pollutants differ significantly from both those of adults and from outdoor concentrations. They depend on a range of factors, including urbanisation, energy use, building design, travel patterns, and activity profiles; analysis of these factors can identify a wider range of policy measures to reduce children's exposure than direct emission control. There is a very large variation in personal exposure between individual children, caused by differences in building design, indoor and outdoor sources, and activity patterns. Identifying groups of children with high personal exposure, and their underlying causes, is particularly important in regions of the world where emissions are increasing, but there are limited resources for environmental and health protection. Although the science of personal exposure assessment, with the associated measurement and modelling techniques, has developed to maturity in North America and western Europe over the last 50 years, there is an urgent need to apply this science in other parts of the world where the effects of air pollution are now much more serious.  相似文献   

7.
Currently available information suggests a substantial environmental impact from residential wood combustion emissions. Air pollution from this source is widespread and increasing. Current ambient measurements, surveys, and model predictions indicate winter respirable (<2 μm) emissions from residential wood combustion can easily exceed all other sources. Both the chemical potency and deliverability of the emissions from this source are of concern. The emissions are almost entirely in the inhalable size range and contain toxic and priority pollutants, carcinogens, co-carcinogens, cilia toxic, mucus coagulating agents, and other respiratory irritants such as phenols, aldehydes, etc. This source is contributing substantially to the nonattainment of current particulate, carbon monoxide, and hydrocarbon ambient air quality standards and will almost certainly have a significant impact on potential future standards such as inhalable particulates, visibility, and other chemically specific standards. Emission from this growing source is likely to require additional expenditures by industry for air pollution control equipment in nonattainment areas.  相似文献   

8.
Paired indoor and outdoor concentrations of fine and coarse particulate matter (PM), PM2.5 reflectance [black carbon(BC)], and nitrogen dioxide (NO2) were determined for sixteen weeks in 2008 at four elementary schools (two in high and two in low traffic density zones) in a U.S.-Mexico border community to aid a binational health effects study. Strong spatial heterogeneity was observed for all outdoor pollutant concentrations. Concentrations of all pollutants, except coarse PM, were higher in high traffic zones than in the respective low traffic zones. Black carbon and NO2 appear to be better traffic indicators than fine PM. Indoor air pollution was found to be well associated with outdoor air pollution, although differences existed due to uncontrollable factors involving student activities and building/ventilation configurations. Results of this study indicate substantial spatial variability of pollutants in the region, suggesting that children’s exposures to these pollutants vary based on the location of their school.  相似文献   

9.
Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure.To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other indoors (leisure activities like shopping areas, gym, theatre/cinema and restaurants). The results show how this developed modelling system can be useful to anticipate air pollution episodes and to estimate their effects on human health on a long-term basis. The two metropolitan areas of Porto and Lisbon are identified as the most critical ones in terms of air pollution effects on human health over Portugal in a long-term as well as in a short-term perspective. The coexistence of high concentration values and high population density is the key factor for these stressed areas. Regarding the 50% emission reduction scenario, the model results are significantly different for both pollutants: there is a small overall reduction in the individual exposure values of PM10 (<10 μg m?3 h), but for O3, in contrast, there is an extended area where exposure values increase with emission reduction. This detailed knowledge is a prerequisite for the development of effective policies to reduce the foreseen adverse impact of air pollution on human health and to act on time.  相似文献   

10.
High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.  相似文献   

11.
Regional and global air pollution from marine transportation is a growing concern. In discerning the sources of such pollution, researchers have become interested in tracking where along the total fuel life cycle these emissions occur. In addition, new efforts to introduce alternative fuels in marine vessels have raised questions about the energy use and environmental impacts of such fuels. To address these issues, this paper presents the Total Energy and Emissions Analysis for Marine Systems (TEAMS) model. TEAMS can be used to analyze total fuel life cycle emissions and energy use from marine vessels. TEAMS captures "well-to-hull" emissions, that is, emissions along the entire fuel pathway, including extraction, processing, distribution, and use in vessels. TEAMS conducts analyses for six fuel pathways: (1) petroleum to residual oil, (2) petroleum to conventional diesel, (3) petroleum to low-sulfur diesel, (4) natural gas to compressed natural gas, (5) natural gas to Fischer-Tropsch diesel, and (6) soybeans to biodiesel. TEAMS calculates total fuel-cycle emissions of three greenhouse gases (carbon dioxide, nitrous oxide, and methane) and five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with aerodynamic diameters of 10 microm or less, and sulfur oxides). TEAMS also calculates total energy consumption, fossil fuel consumption, and petroleum consumption associated with each of its six fuel cycles. TEAMS can be used to study emissions from a variety of user-defined vessels. This paper presents TEAMS and provides example modeling results for three case studies using alternative fuels: a passenger ferry, a tanker vessel, and a container ship.  相似文献   

12.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

13.
In recent years, the rapid increase in population density has caused increases in the consumption of fuel, and the outdoor air quality has deteriorated in the crowded urban areas of Turkey. Erzurum, a city in the eastern part of Turkey, is influenced by air pollutants such as SO2 and suspended particles. It is known that, in general, the air pollution concentrations have a close relationship with meteorological factors. In this study, the relationship between outdoor air quality data and meteorological factors, such as wind speed, rainfall, temperature, sunshine hours and relative humidity, is statistically analysed, using the code SPSS. According to the results obtained through multiple linear regression analysis, there are moderate levels of correlation between SO2 and particle concentrations and meteorological factors in Erzurum.  相似文献   

14.
Abstract

A computational fluid dynamics technique was used to evaluate the effect of traffic pollution on indoor air quality of a naturally ventilated building for various ventilation control strategies. The transport of street-level nonreactive pollutants emitted from motor vehicles through the indoor environment was simulated using the large eddy simulation (LES) of the turbulent flows and the pollutant transport equations. The numerical model developed herein was verified by available wind-tunnel measurements. Good agreement with the measured velocity and concentration data was found. Twelve sets of numerical scenario simulations for various roof- and side-vent openness and outdoor wind speeds were carried out. The effects of the air change rate, the indoor airflow pattern, and the external pollutant dispersion on indoor air quality were investigated. The control strategies of ventilation rates and paths for reducing incoming vehicle pollutants and maintaining a desirable air change rate are proposed to reduce the impact of outdoor traffic pollution during traffic rush hours. It was concluded that the windward side vent is a significant factor contributing to air change rate and indoor air quality. Air intakes on the leeward side of the building can effectively reduce the peak and average indoor concentration of traffic pollutants, but the corresponding air change rate is relatively low. Using the leeward cross-flow ventilation with the windward roof vent can effectively lower incoming vehicle pollutants and maintain a desirable air change rate during traffic rush hours.  相似文献   

15.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.  相似文献   

16.
Environmental Science and Pollution Research - Chipboard production is a source of ambient air pollution. We assessed the spatial variability of outdoor pollutants and residential exposure of...  相似文献   

17.
It is estimated that there is sufficient in-state “technically” recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality.

Implications:?This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California.  相似文献   

18.
A computational fluid dynamics technique was used to evaluate the effect of traffic pollution on indoor air quality of a naturally ventilated building for various ventilation control strategies. The transport of street-level nonreactive pollutants emitted from motor vehicles through the indoor environment was simulated using the large eddy simulation (LES) of the turbulent flows and the pollutant transport equations. The numerical model developed herein was verified by available wind-tunnel measurements. Good agreement with the measured velocity and concentration data was found. Twelve sets of numerical scenario simulations for various roof- and side-vent openness and outdoor wind speeds were carried out. The effects of the air change rate, the indoor airflow pattern, and the external pollutant dispersion on indoor air quality were investigated. The control strategies of ventilation rates and paths for reducing incoming vehicle pollutants and maintaining a desirable air change rate are proposed to reduce the impact of outdoor traffic pollution during traffic rush hours. It was concluded that the windward side vent is a significant factor contributing to air change rate and indoor air quality. Air intakes on the leeward side of the building can effectively reduce the peak and average indoor concentration of traffic pollutants, but the corresponding air change rate is relatively low. Using the leeward cross-flow ventilation with the windward roof vent can effectively lower incoming vehicle pollutants and maintain a desirable air change rate during traffic rush hours.  相似文献   

19.
ABSTRACT

Information about the ratio between indoor and outdoor concentrations (IO ratios) of air pollutants is a crucial component in human exposure assessment. The present study examines the relationship between indoor and outdoor concentrations as influenced by the combined effect of time patterns in outdoor concentrations, ventilation rate, and indoor emissions. Two different mathematical approaches are used to evaluate IO ratios. The first approach involves a dynamic mass balance model that calculates distributions of transient IO ratios. The second approach assumes a linear relationship between indoor and outdoor concentrations. We use ozone and benzene as examples in various modeling exercises. The modeled IO ratio distributions are compared with the results obtained from linear fits through plots of indoor versus outdoor concentrations.  相似文献   

20.
The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM < or = 2.5 microm [PM2.5] and < or = 10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号