首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hseu ZY 《Chemosphere》2006,64(10):1769-1776
In the application of biosolids on agricultural lands, 4-nonylphenol (4-NP) in soils is an important environmental concern because of its associated estrogenic risk to animals and human beings. Incubation experiments that involved the mixing of two contrasting soils (A: calcareous sandy soil; B: acidic clayey soil) and biosolids in 4-NP were performed to examine the effect of 4-NP on the rate of production of CO2, the mineralization of N and the microbial biomass, by considering the biodegradation of 4-NP for the evaluation of soil health. The experimental results indicated that the half-life (t1/2) of 4-NP increased with the supplementary concentration of 4-NP (80, 160 and 240 mg kg(-1)) in the two soils, and the t1/2 values in the soil A are always lower than that in soil B. The 4-NP supplement in the biosolids reverses C mineralization in soil B more than it does in soil A, but it reverses N mineralization in soil A more than in soil B. The aeration status and microbial population of the biosolids treated soils are key factors in determining the time course of 4-NP degradation associated with the microbial activities. The 4-NP was biodegraded mainly by bacteria, and the effect on C and N mineralization of 4-NP input is determined by a balance of the reductions in microbial biomass C (MBC) and N (MBN). After destruction in microbial cell membrane and protein structures by the 4-NP, C and N mineralization, MBC and MBN were subsequently followed by a final decline phase for the later period of incubation.  相似文献   

2.
Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost.  相似文献   

3.
Abstract

Recycling of organic residues by composting is becoming an acceptable practice in our society. Co-composting dewatered paper mill sludge (PMS) and hardwood sawdust, two readily available materials in Canada, was investigated using uncontrolled and controlled in-vessel processes. The composted materials were characterized for total C and N, water-soluble, acid-hydrolyzable, and non-hydrolyzable N, extractable lipids, and by Fourier Transform Infrared (FT-IR) spectrophotometry. In the controlled scale process, the loss of organic matter was approximately 65% higher than in the uncontrolled process. After undergoing initial fluctuations in N fractions during the first two days of composting, by the end of the process, concentrations of water-soluble N decreased while those of acid-hydrolyzable and nonhydrolyzable N increased in the controlled process, whereas in the uncontrolled process, water-soluble N increased, but N in the other two fractions decreased continuously, indicating that the biochemical transformations of organic matter were not completed. Data on extractable lipids and FT-IR spectra suggest that the compost produced from the controlled process was bio-stable after 14 days, while the uncontrolled process was not stabilized after 18 days. In addition, FT-IR data suggest the biological activity during composting centered mainly on the degradation of aliphatic structures while aromatic structures were preserved. The co-composting of the PMS and hardwood sawdust can be successfully achieved if aeration, moisture, and bio-available C/N ratios are optimized to reduce losses of N.  相似文献   

4.
矿化垃圾中的微生物区系与酶活性变化特征研究   总被引:1,自引:0,他引:1  
选择某市郊城市生活垃圾填埋场为研究对象,对填埋时间分别达6、8、10年的矿化垃圾中的微生物区系与酶活性变化特征进行了比较。结果表明,表层(0~50 cm)和底层(100~150 cm)矿化垃圾中的微生物数量和酶活性变化幅度大于中层(50~100cm);填埋达6、8、10年后的各层矿化垃圾中的细菌数量明显低于对照,放线菌数量则明显高于对照,而真菌数量在表层和中层中高于对照或与对照相当,在底层则低于对照,各层中的脲酶、碱性磷酸酶、碱性磷酸酶活性则明显高于对照或与对照相当;总体来说,相同填埋深度的矿化垃圾中,填埋达6~8年的细菌、真菌、放线菌数量和脲酶、碱性磷酸酶、酸性磷酸酶活性的变化幅度要大于填埋8~10年的,且均在填埋8~10年趋于稳定。  相似文献   

5.
Recycling of organic residues by composting is becoming an acceptable practice in our society. Co-composting dewatered paper mill sludge (PMS) and hardwood sawdust, two readily available materials in Canada, was investigated using uncontrolled and controlled in-vessel processes. The composted materials were characterized for total C and N, water-soluble, acid-hydrolyzable, and non-hydrolyzable N, extractable lipids, and by Fourier Transform Infrared (FT-IR) spectrophotometry. In the controlled scale process, the loss of organic matter was approximately 65% higher than in the uncontrolled process. After undergoing initial fluctuations in N fractions during the first two days of composting, by the end of the process, concentrations of water-soluble N decreased while those of acid-hydrolyzable and nonhydrolyzable N increased in the controlled process, whereas in the uncontrolled process, water-soluble N increased, but N in the other two fractions decreased continuously, indicating that the biochemical transformations of organic matter were not completed. Data on extractable lipids and FT-IR spectra suggest that the compost produced from the controlled process was bio-stable after 14 days, while the uncontrolled process was not stabilized after 18 days. In addition, FT-IR data suggest the biological activity during composting centered mainly on the degradation of aliphatic structures while aromatic structures were preserved. The co-composting of the PMS and hardwood sawdust can be successfully achieved if aeration, moisture, and bio available C/N ratios are optimized to reduce losses of N.  相似文献   

6.
Mendoza C  Assadian NW  Lindemann W 《Chemosphere》2006,63(11):1933-1941
The determination of nitrogen (N) based loading rates for land application of biosolids is challenging and site specific. Over loading may contribute to environmental, agricultural, or human health problems. The objective of this study was to monitor N mineralization and losses in a moderately alkaline and calcareous desert soil amended with either anaerobically digested (AN) or lime-stabilized (LS) biosolids, and irrigated with and without urea enriched water. For Experiment 1, N inputs, leaching and residuals in soil were evaluated in an open soil column system. For Experiment 2, ammonia (NH3) emissions were evaluated in a closed soil column system. In Experiment 1, AN and LS biosolids increased soil ON (organic N) by three and two fold, respectively. Respective net N mineralization of ON from biosolids alone was 90% and 62% without urea, and 71% and 77%, respectively with added urea. Nitrogen leaching losses and residuals in amended soil did not account for all N inputs into the soil/biosolids system. In Experiment 2, NH3 emissions were not significantly different among treated soils with or without added urea, except LS amended soil receiving urea. Ammonia losses did not account for unaccounted N in Experiment 1. We concluded that deep placement and rapid mineralization of AN biosolids promoted anaerobic soil conditions and denitrification, in addition to the high denitrification potential of desert soil. LS biosolids showed greater potential than AN biosolids for safe and beneficial land application to desert soils regardless of biosolids placement and the inclusion of N rich irrigation water.  相似文献   

7.
The purpose of the research was to establish whether humic acid-like substances (HA) related to municipal refuse disposed of in a landfill can resist microbial degradation and if they contribute, in that way, to long-term stabilization of landfill refuse. Using a mixture of 0.1 M Na(4)P(2)O(7) + 0.1 M NaOH, we extracted HA from municipal refuse mixed with sewage sludge and disposed of for up to 12 months, in a 40-m(3) model landfill. In laboratory experiments under aerobic conditions, up to 50% of HA was utilized as a supplementary source of nutrients by an assemblage of soil microorganisms in only 21 days. The microbial utilization was enhanced to over 80%, and up to 98%, respectively, if HA served as the sole source of carbon or nitrogen. Remaining HA which could be re-isolated from microbial cultures were lower in carbon (<12%) and nitrogen (<2.3%). Spectroscopic analysis (UV, Vis, FTIR) indicated losses, especially in aliphatic structural units, and a relative enhancement in aromatic structures. It was postulated that for their high degree of degradability, HA indigenous to that anthropogenic environment would not play an important role in the long-term stabilization of landfill refuse.  相似文献   

8.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

9.
The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20 degrees C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

10.
Two methods of biostimulation were compared in a laboratory incubation study with monitored natural attenuation (MNA) for total petroleum hydrocarbon (TPH) degradation in diesel-contaminated Tarpley clay soil with low carbon content. One method utilized rapid-release inorganic fertilizers rich in N and P, and the other used sterilized, slow-release biosolids, which added C in addition to N and P. After 8 weeks of incubation, both biostimulation methods degraded approximately 96% of TPH compared to MNA, which degraded 93.8%. However, in the first week of incubation, biosolids-amended soils showed a linear two orders of magnitude increase in microbial population compared to MNA, whereas, in the fertilizer-amended soils, only a one order of magnitude increase was noted. In the following weeks, microbial population in the fertilizer-amended soils dropped appreciably, suggesting a toxic effect owing to fertilizer-induced acidity and/or NH(3) overdosing. Results suggest that biosolids addition is a more effective soil amendment method for biostimulation than the commonly practiced inorganic fertilizer application, because of the abilities of biosolids to supplement carbon. No statistically significant difference was observed between the biostimulation methods and MNA, suggesting that MNA can be a viable remediation strategy in certain soils with high native microbial population.  相似文献   

11.
为加速好氧填埋场的稳定化进程,提出利用生物强化技术加速好氧填埋垃圾的生物降解,通过模拟实验,研究了微生物菌剂对填埋垃圾稳定过程的影响。结果表明:微生物菌剂降低了好氧填埋场的有机污染负荷,使渗滤液COD下降更加明显,整个填埋周期所产渗滤液的COD总量较对照组少20.20%;加速了含氮物质的生物转化,氨氮峰值出现较对照组提前6 d,经历峰值以后,氨氮快速下降,较对照组提前22 d达到国家生活垃圾填埋场污染控制标准(GB 16889-2008)所规定的渗滤液氨氮排放标准25 mg/L,并使整个填埋周期氨氮总量减少9.15%;微生物菌剂降低了渗滤液的产量,使整个填埋周期渗滤液累计产量减少8.29%;使垃圾中有机质降解加快并使其降解更加彻底,至实验结束时总有机质含量较对照组低8.82%,干重较对照组减少35.95%;沉降性能优于对照组,至填埋结束时较对照组沉降量提高6.35%。  相似文献   

12.
Subterranean clover and barley were grown on a soil derived from uranium mining debris and fertilized with phosphate as a U immobilizing additive for in situ remediation. We investigated the beneficial effect of P fertilization in the range 0-500 mg P kg(-1) soil in terms of U extractability, plant biomass production and U uptake. Increasing P in the mining debris caused a significant decrease of the water-soluble U and NH(4)-Ac extractable U at pH 7 and 5. For both plant species, P fertilization considerably increased root and shoot dry matter up to a maximum observed for soil receiving 100 mg P kg(-1) while the soil-to-plant transfer of U was regularly decreased by increasing P content in soil. These observations show that P fertilization represents an in situ practical option to facilitate the revegetation of U-mining heaps and to reduce the risks of biota exposure to U contamination.  相似文献   

13.
Park S  Lee I  Cho C  Sung K 《Chemosphere》2008,70(6):1117-1123
Landfill gases could be vented through a layer of landfill cover soil that could serve as a biofilter to oxidize methane to carbon dioxide and water. Properly managed landfill cover soil layers may reduce atmospheric CH4 emissions from landfills. In the present study, the effects of earthworm cast and powdered activated carbon (PAC) on the CH4 removal capacity of the landfill cover soil was investigated. For this purpose, column and batch tests were conducted using three different materials: typical landfill cover soil, landfill cover soil amended with earthworm cast, and landfill cover soil amended with PAC. The maximum CH4 removal rate of the columns filled with landfill cover soil amended with earthworm cast was 14.6mol m(-2)d(-1), whereas that of the columns filled with typical landfill cover soil was 7.4mol m(-2)d(-1). This result shows that amendment with earthworm cast could stimulate the CH4-oxidizing capacity of landfill cover soil. The CH4 removal rate of the columns filled with landfill cover soil amended with PAC also showed the same removal rate, but the vertical profile of gas concentrations in the columns and the methanotrophic population measured in the microbial assay suggested that the decrease of CH4 concentration in the columns is mainly due to sorption. Based on the results from this study, amendment of landfill cover soil with earthworm cast and PAC could improve its CH4 removal capacity and thus achieve a major reduction in atmospheric CH4 emission as compared with the same landfill cover soil without any amendment.  相似文献   

14.

Background, aim and scope  

In an alumina refinery, bauxite ore is treated with sodium hydroxide at high temperatures and pressures and for every tonne of alumina produced, about 2 tonnes of alkaline, saline bauxite processing waste is also produced. At Alcoa, a dry stacking system of disposal is used, and it is the sand fraction of the processing waste that is rehabilitated. There is little information available regarding the most appropriate amendments to add to the processing sand to aid in revegetation. The purpose of this study was to investigate how the addition of organic wastes (biosolids and poultry manure), in the presence or absence of added residue mud, would affect the properties of the residue sand and its suitability for revegetation.  相似文献   

15.
Phosphorus-based nutrient management will inevitably be required for land application of biosolids. Water-extractable phosphorus (WEP) in livestock manures is an indicator of phosphorus loss from agricultural watersheds and this study evaluated its use for biosolids. The WEP to total phosphorus percentage (PWEP) in 41 biosolids (representing a variety of wastewater and solids treatment processes) was compared to dairy and poultry manures and triple superphosphate fertilizer. The mean PWEP for conventionally treated and stabilized biosolids was 2.4%, which was significantly lower than inorganic fertilizer (85%), dairy manure (52%), and poultry manure (21%). Low biosolids PWEP is attributed to elevated aluminum and iron content from chemical additions during wastewater treatment and solids dewatering operations. Facilities using biological phosphorus removal had the highest mean biosolids PWEP (approximately 14%), whereas heat-dried biosolids had the lowest average PWEP (< approximately 0.5%). Paired samples of digested cake and the corresponding biosolids treated by processes to further reduce pathogens (i.e., thermal treatment, composting, and advanced alkaline stabilization) showed that these processes tended to reduce biosolids PWEP. Biosolids composition and processing mode exert a controlling influence on the potential for off-site phosphorus migration at land-application sites. Nutrient management policies for land-based recycling should account for the widely varying potential of organic amendments to cause soluble phosphorus losses in runoff and leaching.  相似文献   

16.
Biosolids produced from pulp and paper mill wastewater treatment have excellent properties as soil conditioners, but often contain high levels of Escherichia coli. E. coli are commonly used as indicators of fecal contamination and health hazard; therefore, their presence in biosolids causes concern and has lead to restrictions in land-spreading. The objectives of this study were to determine the following: (1) if E. coli from the biosolids of a wastewater-free pulp and paper mill were enteric pathogens, and (2) if other waterborne microbial pathogens were present. E. coli were screened for heat-labile and heat-stable enterotoxin and verocytotoxin virulence genes using a polymerase chain reaction. Ten isolates were also screened for invasion-associated locus and invasion plasmid antigen H genes. None of the 120 isolates carried these genes. Tests for seven other microbial pathogens were negative. Effluents and biosolids from this mill do not contain common microbial pathogens and are unlikely to pose a health hazard.  相似文献   

17.
Metal tolerance and phytoextraction potential of two common sorrel (Rumex acetosa L.) accessions, collected from a Pb/Zn contaminated site (CS, Lanestosa) and an uncontaminated site (UCS, Larrauri), were studied in fertilized and non-fertilized pots prepared by combining soil samples from both sites in different proportions (i.e., 0%, 33%, 66% and 100% of Lanestosa contaminated soil). The original metalliferous mine soil contained 20480, 4950 and 14 mg kg(-1) of Zn, Pb and Cd, respectively. The microcosm experiment was carried out for two months under greenhouse controlled conditions. It was found that fertilization increased mean plant biomass of both accessions as well as their tolerance. However, only the CS accession survived all treatments even though its biomass decreased proportionally according to the percentage of contaminated mine soil present in the pots. This metallicolous accession would be useful for the revegetation and phytostabilization of mine soils. Due to its high concentration and bioavailability in the contaminated soil, the highest values of metal phytoextracted corresponded to Zn. The CS accession was capable of efficiently phytoextracting metal from the 100% mine soil, indeed reaching very promising phytoextraction rates in the fertilized pots (6.8 mg plant(-1) month(-1)), similar to the ones obtained with hyperaccumulator plants. It was concluded that fertilization is certainly worth being considered for phytoextraction and revegetation with native plants from metalliferous soils.  相似文献   

18.
Vertically migrating landfill gases pose inimical challenges to site revegetation strategies. Laboratory studies were made to examine the efficacy of ectomycorrhizae and soil cover to obviate the challenges of ethylene and methane. In the presence of ethylene concentrations 相似文献   

19.
The presence of heavy metals in composts is a main cause of adverse effects on animal and human health, transmitted through the food chain from the soil, groundwater and plants. In this study, the contents of Zn, Cd, Pb and Cu present in co-composts of poultry manure (liquid or solid) with a co-composting material (barley wastes or chestnut burr/leaf litter) were assessed. A compost of solid manure was used as control because a compost cannot be obtained from the liquid manure. The original solid poultry manure showed a Zn content of 2134+/-75 mg/kg, exceeding the current legal limit in Spain of 1100 mg/kg. In the solid poultry manure co-compost with chestnut burr/leaf litter and barley wastes, Zn content decreased to 813+/-25 mg/kg and 883+/-37 mg/kg, respectively. The contents in heavy metals (Zn, Cd, Pb and Cu) of the co-composts were under the maximum limit permitted under the Spanish legislation, excepting for the Zn level in liquid poultry manure co-composted with chestnut burr/leaf litter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号