首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We have estimated the stocks of carbon in vegetation and soil in northeast China based on data for 122 plots from the fourth national forest inventory, and for 388 soil profiles from the second national soil survey. The techniques of Geographic Information System (GIS) have been used to extrapolate site-specific estimates of vegetation and soil organic carbon to the entire area of northeast China. Our estimate indicates that the amount of carbon in vegetation and soil for the region are 2.81 PgC (10(15) g C) and 26.43 PgC, respectively, and that the area weighted average density of vegetation and soil organic carbon are 22.7 MgC/ha and 212.7 MgC/ha, respectively. The eastern and northern parts of the region show much higher carbon storage than the rest of the region. Substantial spatial variations in vegetation and soil organic carbon across northeast China suggest that regional estimates on carbon stocks and fluxes should take into account these spatial variations. We suggest that the methodology developed can be used for the entire nation of China as well as other regions of the world.  相似文献   

2.
The 90,674 wildland fires that burned 2.9 million ha at an estimated suppression cost of $1.6 billion in the United States during the 2000 fire season demonstrated that forest fuel loading has become a hazard to life, property, and ecosystem health as a result of past fire exclusion policies and practices. The fire regime at any given location in these regions is a result of complex interactions between forest biomass, topography, ignitions, and weather. Forest structure and biomass are important aspects in determining current and future fire regimes. Efforts to quantify live and dead forest biomass at the local to regional scale has been hindered by the uncertainty surrounding the measurement and modeling of forest ecosystem processes and fluxes. The interaction of elevated CO2 with climate, soil nutrients, and other forest management factors that affect forest growth and fuel loading will play a major role in determining future forest stand growth and the distribution of species across the southern United States. The use of satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of forest carbon. The incorporation of Landsat Thematic Mapper data coupled with a physiologically based productivity model (PnET), soil water holding capacity, and historic and projected climatic data provides an opportunity to enhance field plot based forest inventory and monitoring methodologies. We use periodic forest inventory data from the USDA Forest Service's Forest Inventory and Analysis (FIA) project to obtain estimates of forest area and type to generate estimates of carbon storage for evergreen, deciduous, and mixed forest classes for use in an assessment of remotely sensed forest cover at the regional scale for the southern United States. The displays of net primary productivity (NPP) generated from the PnET model show areas of high and low forest carbon storage potential and their spatial relationship to other landscape features for the southern United States. At the regional scale, predicted annual NPP in 1992 ranged from 836 to 2181 g/m2/year for evergreen forests and 769-2634 g/m2/year for deciduous forests with a regional mean for all forest land of 1448 g/m2/year. Prediction of annual NPP in 2050 ranged from 913 to 2076 g/m2/year for evergreen forest types to 1214-2376 g/m2/year for deciduous forest types with a regional mean for all forest land of 1659 g/m2/year. The changes in forest productivity from 1992 to 2050 are shown to display potential areas of increased or decreased forest biomass. This methodology addresses the need for spatially quantifying forest carbon in the terrestrial biosphere to assess forest productivity and wildland fire fuels.  相似文献   

3.
Carbon stock dynamics was monitored in the Uttara Kannada district, Western Ghats, India, for ten years on eight one-hectare sampling areas belonging to different management and forest categories. The study was initiated in 1984 and the area was monitored until 1994. Our study indicates that, in general, the carbon stock has enhanced during the study period with an average growth of 1.008 t/ha/year. However, there were differences in carbon stocks in different management regimes. The minor forests that are subjected to intense human pressures had a negative growth rate, i.e. 0.237 t/ha/year, while the reserve forests have a carbon assimilation rate of 1.31 t/ha/year. This indicates that human pressure has certainly decreased the carbon accumulation in the forests of Uttara Kannada. Despite the anthropogenic pressure, the minor forests have higher carbon accumulation through recruits as compared to the reserve forests. Thus it is suggested that a management strategy is needed to look into enhancing recruitment patterns in the minor forests which would become future carbon stocks.  相似文献   

4.
The national Forest Health Monitoring (FHM) program conducted a remeasurement study in 1999 to evaluate the usefulness and feasibility of collecting data needed for investigating carbon budgets in forests. This study indicated that FHM data are adequate for detecting a 20% change over 10 years (2% change per year) in percent total carbon and carbon content (MgC/ha) when sampling by horizon, with greater than 80% probability that a change in carbon content will be determined when a change has truly occurred (P < or = 0.33). The data were also useful in producing estimates of forest floor and soil carbon stocks by depth that were somewhat lower than literature values used for comparison. The scale at which the data were collected lends itself to producing standing stock estimates needed for carbon budget development and carbon cycle modeling. The availability of site-specific forest mensuration data enables the exploration of above ground and below ground linkages.  相似文献   

5.
Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US forest carbon sequestration average approximately 20 Tg (i.e. 10(12) g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes occur two out of three years across the eastern US. A single storm can convert the equivalent of 10% of the total annual carbon sequestrated by US forests into dead and downed biomass. Given that forests require at least 15 years to recover from a severe storm, a large amount of forest carbon is lost either directly (through biomass destruction) or indirectly (through lost carbon sequestration capacity) due to hurricanes. Only 15% of the total carbon in destroyed timber is salvaged following a major hurricane. The remainder of the carbon is left to decompose and eventually return to the atmosphere. Short-term increases in forest productivity due to increased nutrient inputs from detritus are not fully compensated by reduced stem stocking, and the recovery time needed to recover leaf area. Therefore, hurricanes are a significant factor in reducing short-term carbon storage in US forests.  相似文献   

6.
The accuracy of the Moderate Resolution Imaging Spectroradiometer's (MODIS) aerosol products is still uncertain in China, due to a lack of validation by long-term and large-scale ground-based observations. In this paper, the MODIS aerosol optical depth (AOD) product is evaluated using Chinese Sun Hazemeter Network (CSHNET) data as ground truths over different ecological regions in China during the East Asian Study of Tropospheric Aerosols—an International Regional Experiment (EAST-AIRE). The evaluation results show very large differences in the MODIS AOD retrieval between different ecosystems and geographic locations. The most agreement between the MODIS data and that of the CSHNET was in farmland sites in central-southern China, where high correlation (R>0.82) and large percentages (R2>72%) within the expected error lines issued by NASA were found. In temperate forest, coastal regions, and northeast and central farmlands, there appeared moderate agreement, with R∼0.64–0.80 and 45–73% of retrieval data falling within the expected errors. The poorest agreement existed in northern arid and semiarid regions, in remote northeast farmlands, in the Tibetan and Loess Plateau, and in southern forests, with 13–54% of retrieval data falling within the expected errors. In addition, the MODIS AOD retrievals were significantly overestimated in the northern arid and semiarid regions and underestimated in remote northeast farmlands and southern forests.  相似文献   

7.
GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. METHODS: A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. RESULTS AND DISCUSSION: A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. CONCLUSIONS: This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. RECOMMENDATIONS: The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within watersheds using publicly available information. This method can quickly identify discrete locations with relatively precise spatial boundaries (approximately 80 meter resolution) that have a high sheet erosion potential as well as areas where management interventions might be appropriate to prevent or ameliorate erosion.  相似文献   

8.
Soil carbon dynamics and potential carbon sequestration by rangelands   总被引:14,自引:0,他引:14  
The USA has about 336 Mha of grazing lands of which rangelands account for 48%. Changes in rangeland soil C can occur in response to a wide range of management and environmental factors. Grazing, fire, and fertilization have been shown to affect soil C storage in rangelands, as has converting marginal croplands into grasslands. Carbon losses due to soil erosion can influence soil C storage on rangelands both by reducing soil productivity in source areas and potentially increasing it in depositional areas, and by redistributing the C to areas where soil organic matter mineralization rates are different. Proper grazing management has been estimated to increase soil C storage on US rangelands from 0.1 to 0.3 Mg C ha(-1)year(-1) and new grasslands have been shown to store as much as 0.6 Mg C ha(-1)year(-1). Grazing lands are estimated to contain 10-30% of the world's soil organic carbon. Given the size of the C pool in grazing lands we need to better understand the current and potential effects of management on soil C storage.  相似文献   

9.
Air pollution and forest health: toward new monitoring concepts   总被引:4,自引:0,他引:4  
It is estimated that 49% of forests (17 million km(2)) will be exposed to damaging concentrations of tropospheric O(3) by 2100. Global forest area at risk from S deposition may reach 5.9 million km(2) by 2050, despite SO(2) emission reductions of 48% in North America and 25% in Europe. Although SO(2) levels have decreased, emissions of NO(x) are little changed, or have increased slightly. In some regions, the molar SO(4)/NO(3) ratio in precipitation has switched from 2/1 to near 1/1 during the past two decades. Coincidentally, pattern shifts in precipitation and temperature are evident. A number of reports suggest that forests are being affected by air pollution. Yet, the extent to which such effects occur is uncertain, despite the efforts dedicated to monitoring forests. Routine monitoring programmes provide a huge amount of data. Yet in many cases, these data do not fit the conceptual and statistical requirements for detecting status and trends of forest health, nor for cause-effect research. There is a clear need for a re-thinking of monitoring strategies.  相似文献   

10.
Soil carbon pools and fluxes in urban ecosystems   总被引:2,自引:0,他引:2  
The transformation of landscapes from non-urban to urban land use has the potential to greatly modify soil carbon (C) pools and fluxes. For urban ecosystems, very little data exists to assess whether urbanization leads to an increase or decrease in soil C pools. We analyzed three data sets to assess the potential for urbanization to affect soil organic C. These included surface (0-10 cm) soil C data from unmanaged forests along an urban-rural gradient, data from "made" soils (1 m depth) from five different cities, and surface (0-15 cm) soil data of several land-use types in the city of Baltimore. Along the urban-rural land-use gradient, we found that soil organic matter concentration in the surface 10 cm varied significantly (P=0.001). In an analysis of variance, the urban forest stands had significantly (P=0.02) higher organic C densities (kg m(-2) to 1 m depth) than the suburban and rural stands. Our analysis of pedon data from five cities showed that the highest soil organic C densities occurred in loamy fill (28.5 kg m(-2)) with the lowest occurring in clean fill and old dredge materials (1.4 and 6.9 kg m(-2), respectively). Soil organic C densities for residential areas (15.5 +/- 1.2 kg m(-2)) were consistent across cities. A comparison of land-use types showed that low density residential and institutional land-uses had 44 and 38% higher organic C densities than the commercial land-use type, respectively. Our analysis shows that as adjacent land-use becomes more urbanized, forest soil C pools can be affected even in stands not directly disturbed by urban land development. Data from several "made" soils suggests that physical disturbances and inputs of various materials by humans can greatly alter the amount C stored in these soils.  相似文献   

11.
Soil carbon dynamics in cropland and rangeland   总被引:36,自引:0,他引:36  
Most soils in the Midwestern USA have lost 30 to 50% of their original pool, or 25 to 40 Mg C/ha, upon conversion from natural to agricultural ecosystems. About 60 to 70% of the C thus depleted can be resequestered through adoption of recommended soil and crop management practices. These practices include conversion from plow till to no till, frequent use of winter cover crops in the rotation cycle, elimination of summer fallow, integrated nutrient management along with liberal use of biosolids and biological nitrogen fixation, precision farming to minimize losses and enhance fertilizer use efficiency, and use of improved varieties with ability to produce large root biomass with high content of lignin and suberin. The gross rate of soil organic carbon (SOC) sequestration ranges from 500 to 800 kg/ha/year in cold and humid regions and 100 to 300 kg/ha/year in dry and warm regions. The rate of SOC sequestration can be measured with procedures that are cost effective and credible at soil pedon level, landscape level, regional or national scale. In addition to SOC, there is also a large potential to sequester soil inorganic carbon (SIC) in arid and semi-arid regions. Soil C sequestration has numerous ancillary benefits. It is truly a win-win situation: extremely cost-effective, and a bridge to the future until alternative energy options take effect.  相似文献   

12.
The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals.  相似文献   

13.
The role of temperate forests in the global carbon balance is difficult to determine because many uncertainties exist in the data, and many assumptions must be made in these determinations. Still, there is little doubt that increases in atmospheric CO2 and global warming would have major effects on temperate forest ecosystems. Increases in atmospheric CO2 may result in increases in photosynthesis, changes in water and nitrogen use efficiency, and changes in carbon allocation. Indirect effects of changes in global carbon balance on regional climate and on microenvironmental conditions, particularly temperature and moisture, may be more important than direct effects of increased CO2 on vegetation. Increased incidence of forest perturbations might also be expected. The evidence suggests that conditions favorable to forest growth and development may exist in the northern latitudes, while southern latitude forests may undergo drought stress. Current harvest of temperate and world forests contributes substantial amounts of carbon to the atmosphere, possibly as much as 3 gigatons (Gt) per year. Return of this carbon to forest storage may require decades. Forest managers should be aware of the global as well as local impact their management decisions will have on the atmospheric carbon balance of the ecosystems they oversee.  相似文献   

14.
Measuring carbon in forests: current status and future challenges   总被引:30,自引:0,他引:30  
To accurately and precisely measure the carbon in forests is gaining global attention as countries seek to comply with agreements under the UN Framework Convention on Climate Change. Established methods for measuring carbon in forests exist, and are best based on permanent sample plots laid out in a statistically sound design. Measurements on trees in these plots can be readily converted to aboveground biomass using either biomass expansion factors or allometric regression equations. A compilation of existing root biomass data for upland forests of the world generated a significant regression equation that can be used to predict root biomass based on aboveground biomass only. Methods for measuring coarse dead wood have been tested in many forest types, but the methods could be improved if a non-destructive tool for measuring the density of dead wood was developed. Future measurements of carbon storage in forests may rely more on remote sensing data, and new remote data collection technologies are in development.  相似文献   

15.
Vehicle exhaust is a major source of air pollution in metropolitan cities. Commuters are exposed to high traffic-related pollutant concentrations. Public transportation is the most popular commuting mode in Hong Kong and there are about 10.8 million passenger trips every day. Two-thirds of them are road commuters. An extensive survey was conducted to measure carbon monoxide in three popular passenger commuting modes, bus, minibus, and taxi, which served, respectively, 3.91 million, 1.76 million and 1.31 million passenger trips per day in 1998. Three types of commuting microenvironments were selected: urban–urban, urban–suburban and urban–rural. Results indicated that in-vehicle CO level increased in the following order: bus, minibus and taxi. The overall average in-vehicle CO level in air-conditioned bus, minibus and taxi were 1.8, 2.9 and 3.3 ppm, respectively. The average concentration level difference between air-conditioned buses (1.8 ppm) and non-air-conditioned buses (1.9 ppm) was insignificant. The fluctuation of in-vehicle CO level of non-air-conditioned vehicle followed the variation of out-vehicle CO concentration. Our result also showed that even in air-conditioned vehicles, the in-vehicle CO concentration was affected by the out-vehicle CO concentration although there exists a smoothing out effect. The in-vehicle CO level was the highest in urban–suburban commuting routes and was followed by urban–urban routes. The in-vehicle CO level in urban–rural routes was the lowest. The highest CO level was recorded after the vehicle traversed through tunnel. The average CO exposure of a commuter in tunnel can be 2–3 times higher than that at the other roads. The CO exposure level of public road transportation commuters in Hong Kong was lower than most other cities. Factors governing the CO levels were also discussed.  相似文献   

16.
Shade trees reduce building energy use and CO2 emissions from power plants   总被引:2,自引:0,他引:2  
Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they offer potential savings to communities that plant trees. Our calculations suggest that urban trees play a major role in sequestering CO2 and thereby delay global warming. We estimate that a tree planted in Los Angeles avoids the combustion of 18 kg of carbon annually, even though it sequesters only 4.5-11 kg (as it would if growing in a forest). In this sense, one shade tree in Los Angeles is equivalent to three to five forest trees. In a recent analysis for Baton Rouge, Sacramento, and Salt Lake City, we estimated that planting an average of four shade trees per house (each with a top view cross section of 50 m2) would lead to an annual reduction in carbon emissions from power plants of 16,000, 41,000, and 9000 t, respectively (the per-tree reduction in carbon emissions is about 10-11 kg per year). These reductions only account for the direct reduction in the net cooling- and heating-energy use of buildings. Once the impact of the community cooling is included, these savings are increased by at least 25%.  相似文献   

17.
Ozone and urban forests in Italy   总被引:2,自引:0,他引:2  
Ozone levels along urban-to-rural gradients in three Italian cities (Milan, Florence, Bari) showed that average AOT40 values at rural and suburban sites were 2.6 times higher than those determined at urban sites. However, O3 also exceeded the European criteria to protect forest health at urban sites, even when the standards for human health protection were met. For protecting street trees in Mediterranean cities, the objectives of measurement at urban sites should extend from the protection of human health to the protection of vegetation as well. A review of forest effects on O3 pollution and of O3 pollution on forest conditions in Italian cities showed that it was not possible to distinguish the effect of O3 in the complex mixture of urban pollutants and stressors. A preliminary list of tree species for urban planning in the Mediterranean area shows the average tree capacity of O3 removal and VOC emission.  相似文献   

18.
Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area's ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service's Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.  相似文献   

19.
Abstract

Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area’s ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service’s Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.  相似文献   

20.
This paper presents a methodology for the development of a high-resolution (30-m), standardized biogenic volatile organic compound (BVOC) emissions inventory and a subsequent application of the methodology to Tucson, AZ. The region's heterogeneous vegetation cover cannot be modeled accurately with low-resolution (e.g., 1-km) land cover and vegetation information. Instead, local vegetation data are used in conjunction with multispectral satellite data to generate a detailed vegetation-based land-cover database of the region. A high-resolution emissions inventory is assembled by associating the vegetation data with appropriate emissions factors. The inventory reveals a substantial variation in BVOC emissions across the region, resulting from the region's diversity of both native and exotic vegetation. The importance of BVOC emissions from forest lands, desert lands, and the urban forest changes according to regional, metropolitan, and urban scales. Within the entire Tucson region, the average isoprene, monoterpene, and OVOC fluxes observed were 454, 248, and 91 micrograms/m2/hr, respectively, with forest and desert lands emitting nearly all of the BVOCs. Within the metropolitan area, which does not include the forest lands, the average fluxes were 323, 181, and 70 micrograms/m2/hr, respectively. Within the urban area, the average fluxes were 801, 100, and 100 micrograms/m2/hr, respectively, with exotic trees such as eucalyptus, pine, and palm emitting most of the urban BVOCs. The methods presented in this paper can be modified to create detailed, standardized BVOC emissions inventories for other regions, especially those with spatially complex vegetation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号