首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes.  相似文献   

2.
Solid phase high explosive (HE) residues from munitions detonation may be a persistent source of soil and groundwater contamination at military training ranges. Saturated soil column tests were conducted to observe the dissolution behavior of individual components (RDX, HMX, and TNT) from two HE formulations (Comp B and C4). HE particles dissolved readily, with higher velocities yielding higher dissolution rates, higher mass transfer coefficients, and lower effluent concentrations. Effluent concentrations were below solubility limits for all components at superficial velocities of 10-50 cm day(-1). Under continuous flow at 50 cm day(-1), RDX dissolution rates from Comp B and C4 were 34.6 and 97.6 microg h(-1) cm(-2) (based on initial RDX surface area), respectively, significantly lower than previously reported dissolution rates. Cycling between flow and no-flow conditions had a small effect on the dissolution rates and effluent concentrations; however, TNT dissolution from Comp B was enhanced under intermittent-flow conditions. A model that includes advection, dispersion, and film transfer resistance was developed to estimate the steady-state effluent concentrations.  相似文献   

3.
Incidental exposure to high explosive compounds can cause subtle health effects to which a population could be more susceptible than injury by detonation. Proper source characterization is a key requirement in the conduct of risk assessments. For nonvolatile solid explosives, dissolution is one of the primary mechanisms that controls fate and transport, resulting in exposure to these compounds remote from their source. To date, information describing dissolution rates of high explosives has been sparse. The objective of this study was to determine the dissolution rates of three high explosive compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), in dilute aqueous solutions as a function of temperature, surface area, and energy input. To determine each variable's impact on dissolution rate, experiments were performed where one variable was changed while the other two were held constant. TNT demonstrated the fastest dissolution rate followed by HMX and then RDX. Dissolution rate correlation equations were developed for each explosive compound incorporating the three aforementioned variables, independently, and collectively in one correlation equation.  相似文献   

4.
We report the ability of nickel-based catalysts to degrade explosives compounds in aqueous solution. Several nickel catalysts completely degraded the explosives, although rates varied. Nearly all of the organic explosive compounds tested, including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), were rapidly degraded to below detection limits by a powdered nickel on an alumina-silicate support (Aldrich nickel catalyst). Perchlorate degradation was minimal (<25%). Degradation of TNT by Aldrich nickel catalyst resulted in apparent first-order kinetics. Significant gaseous 14C was released and collected in an alkaline solution (most likely carbon dioxide) from [14C]RDX and [14C]HMX, indicating heterocyclic ring cleavage. Significant gaseous 14C was not produced from [14C]TNT, but spectrophotometric evidence indicated loss of aromaticity. Degradation occurred in low ionic strength solutions, groundwater, and from pH 3 to pH 9. Degradation of TNT, RDX, and HMX was maintained in flow-through columns of Aldrich nickel catalyst mixed with sand down to a hydraulic retention time of 4h. These data indicate that nickel-based catalysts may be an effective means for remediation of energetics-contaminated groundwater.  相似文献   

5.
Adrian NR  Arnett CM 《Chemosphere》2007,66(10):1849-1856
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6-trinitrotoluene (TNT) are explosives that are frequently found as environmental contaminants on military installations. Hydrogen has been shown to support the anaerobic transformation of these explosives. We investigated ethanol and propylene glycol as electron donors for providing syntrophically produced H2 for stimulating the anaerobic biodegradation of explosives in contaminated soil. The study was conducted using anoxic microcosms constructed with slurries of the contaminated soil and groundwater. The addition of 5mM ethanol and propylene glycol enhanced the biodegradation of RDX and HMX relative to the control bottles. Ethanol was depleted within about 20 days, resulting in the transient formation of hydrogen, acetate, and methane. The hydrogen headspace concentration increased from 8 ppm to 1838 ppm before decreasing to background concentrations. Propylene glycol was completely degraded after 15 days, forming hydrogen, propionate, and acetate as end-products. The hydrogen headspace concentrations increased from 56 ppm to 628 ppm before decreasing to background concentrations. No methane formation was observed during the incubation period of 48 days. Our findings indicate the addition of ethanol and propylene to the aquifer slurries increased the hydrogen concentrations and enhanced the biotransformation of RDX and HMX in the explosive-contaminated soil.  相似文献   

6.
Phytoremediation is of great interest to remediate soil contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT). The ability of 4 agronomic plants (maize, soybean, wheat and rice) to take up these explosives and their fate in plants were investigated. Plants were grown for 42 days on soil contaminated with [(14)C]RDX or [(14)C]TNT. Then, each part was analyzed for its radioactivity content and the percentage of bound and soluble residues was determined following extractions. Extracts were analyzed by radio-HPLC. More than 80% of uptaken RDX was translocated to aerial tissues, up to 64.5 mgg(-1) of RDX. By contrast, TNT was little translocated to leaves since less than 25% of uptaken TNT was accumulated in aerial parts. Concentrations of TNT residues were 20 times lower than for RDX uptake. TNT was highly metabolized to bound residues (more than 50% of radioactivity) whereas RDX was mainly found in its parent form in aerial parts.  相似文献   

7.
Characteristics of Composition B particles from blow-in-place detonations   总被引:1,自引:0,他引:1  
We sampled residues from high-order and low-order blow-in-place detonations of mortars and projectiles filled with Composition B (Comp B), a TNT and RDX mixture. Our goals were to (1) characterize the types of explosive particles, (2) estimate the explosive 'footprint' for different munitions, and (3) estimate the mass of Comp B remaining after each detonation. The aerial deposition of Comp B particles helps estimate how large of an area is contaminated by a low-order detonation and how best to sample residue resulting from different rounds. We found that the high-order detonations deposited microgram to milligram quantities whereas the low-order detonations deposited gram quantities of Comp B. For the high-order detonations the concentration of Comp B in the residue decreased as a function of distance from the blast. The low-order tests scattered centimeter-sized chunks and millimeter-sized or smaller particles of Comp B. The chunks were randomly scattered whereas the number of millimeter-sized particles decreased with distance from the detonation. For both high- and low-order detonations we found that the smaller munitions deposited less Comp B than the larger munitions and deposited it closer to the detonation point.  相似文献   

8.
Phosphor imager autoradiography is a technique for rapid, sensitive analysis of the localization of xenobiotics in plant tissues. Use of this technique is relatively new to research in the field of plant science, and the potential for enhancing visualization and understanding of plant uptake and transport of xenobiotics remains largely untapped. Phosphor imager autoradiography is used to investigate the uptake and translocation of the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene within Populus deltoides × nigra DN34 (poplar) and Panicum vigratum Alamo (switchgrass). In both plant types, TNT and/or TNT-metabolites remain predominantly in root tissues while RDX and/or RDX-metabolites are readily translocated to leaf tissues. Phosphor imager autoradiography is further investigated for use in semi-quantitative analysis of uptake of TNT by switchgrass.  相似文献   

9.
During live fire training exercises, large amounts of explosives are consumed. Low order detonations of high explosive payloads result in the patchy dispersal of particles of high explosive formulations over large areas of firing range soils. Dissolution of explosives from explosive formulation particles into soil pore water is a controlling factor for transport, fate, and effects of explosive compounds. We developed an empirical method to evaluate soils based on functionally defined effective dissolution rates. An automated Accelerated Solvent Extractor was used to determine the effective elution rates under controlled conditions of RDX and TNT from soil columns containing particles of Comp B. Contrived soils containing selected soil geosorbants and reactive surfaces were used to quantitatively determine the importance of these materials. Natural soils from training ranges of various soil types were also evaluated. The effects of geosorbants on effective elution rates were compound- and sorbent-specific. TNT elution was less than that of RDX and was greatly slowed by humic acid. Iron and iron-bearing clays reduced the effective elution rates of both RDX and TNT. This empirical method is a useful tool for directly generating data on the potential for explosives to leach from firing range soils, to identify general bulk soil characteristics that can be used to predict the potential, and to identify means to engineer soil treatments to mitigate potential transport.  相似文献   

10.
Flokstra BR  Aken BV  Schnoor JL 《Chemosphere》2008,71(10):1970-1976
Poplar (Populus deltoidesxnigra DN34) tissue cultures removed 2,4,6-trinitrotoluene (TNT) from an aqueous solution in five days, reducing the toxicity of the solution from highly toxic Microtox EC value to that of the control. 1,3,5-Trinitro-1,3,5-triazacyclohexane (RDX) was taken up by the plant tissue cultures more slowly, but toxicity reduction of the solution was evident. The measurement of toxicity reduction of aqueous solutions containing TNT and RDX was performed using a novel methodology developed for use with the Microtox testing system. Radiolabeled TNT and RDX were used to confirm removal of explosives from hydroponic solutions containing plant tissue cultures and to verify that toxicity did not change in solutions where no plant cultures were present (positive controls). High Performance Liquid Chromatography (HPLC) and Liquid Scintillation Counter (LSC) measurements confirmed removal of TNT and RDX from solutions containing poplar plant tissue cultures and constancy of the plant-free controls. In addition, metabolites were identified in remediated solutions by HPLC, confirming the mechanism by which plants can remediate groundwater, surface water, and soil solutions.  相似文献   

11.
Zhang C  Hughes JB 《Chemosphere》2003,50(5):665-671
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a military high explosive, is becoming an increasingly important pollutant in the US. The cleanup of RDX-contaminated soil and groundwater has been a serious challenge due to its recalcitrance in the environment. This study was conducted to determine the biodegradation kinetics of RDX by crude cell extract of Clostridium acetobutylicum (ATCC 824), and to examine whether this bacterium will carry out reductive transformation pathways similar to the transformation of 2,4,6-trinitrotoluene (TNT), 2,4- and 2,6-dinitrotoluenes (DNTs) we have reported previously. Batch studies on the anaerobic transformation of RDX were conducted in serum bottles with U-ring-14C-RDX. RDX and its transformation products were quantified by HPLC and qualified by LC/ MS interfaced to two soft ionization techniques--an atmospheric pressure ionization and an electron spray ionization (API-ES). Results demonstrated that C. acetobutylicum is capable of transforming RDX with H2 as the electron donor. The transformation followed a zero-order kinetics and the rates increased with increasing H2. RDX was transformed into several polar intermediates that could not be separated by reverse-phase HPLC and its molecular ions were unstable under the condition of commonly used electron impact detector. Using a polar and water immiscible solvent (ethyl acetate) and the softer MS ionization techniques, mass spectroscopy detected the presence of several RDX derivatives including mononitroso-, monohydroxylamino-, mononitrosomonohydroxylamino-, monoamino-, diamino-, and triamino-compounds. The presence of hydroxylamino compounds is analogous to the transformation of TNT and DNTs we elucidated previously.  相似文献   

12.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   

13.
Phytoremediation of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater using constructed wetlands is a potentially economical remediation alternative. To evaluate Explosives removal and fate was evaluated using hydroponic batch incubations of plant and substrate treatments with explosives-contaminated groundwater amended with [U-14C]-TNT or [U-14C]-RDX. Plants and substrates were collected from a small-scale wetland constructed for explosives removal, and groundwater originated from a local aquifer at the Milan Army Ammunition Plant. The study surveyed three aquatic, four wetland plant species and two substrates in independent incubations of 7 days with TNT and 13 days with RDX. Parent compounds and transformation products were followed using 14C and chemical (HPLC) analyses. Mass balance of water, plants, substrates and air was determined. It was demonstrated that TNT disappeared completely from groundwater incubated with plants, although growth of most plants except parrot-feather was low in groundwater amended to contain 1.6 to 3.4 mg TNT L-1. Highest specific removal rates were found in submersed plants in water star-grass and in all emergent plants except wool-grass. TNT declined less with substrates, and least in controls without plants. Radiolabel was present in all plants after incubation. Mineralization to 14CO2 was very low, and evolution into 14C-volatile organics negligible. RDX disappeared less rapidly than TNT from groundwater. Growth of submersed plants was normal, but that of emergent plants reduced in groundwater amended to contain 1.5 mg RDX L-1. Highest specific RDX removal rates were found in submersed plants in elodea, and in emergent plants in reed canary grass. RDX failed to disappear with substrates. Mineralization to 14CO2 was low, but relatively higher than in the TNT experiment. Evolution into 14C-volatile organics was negligible. Important considerations for using certain aquatic and wetland plants in constructed wetlands aimed at removing explosives from water are: (1) plant persistence at the explosives level to which it is exposed, (2) specific plant-mass based explosives removal rates, (3) plant productivity, and (4) fate of parent compounds and transformation products in water, plants, and sediments.  相似文献   

14.
Background, Aim and Scope The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. Materials and Methods: An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC–UV) at regular time intervals under simulated sunlight. Results: The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. Discussion: The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. Conclusions: It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. Recommendations and Perspectives: To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described experiments features very good degradation of RDX under simulated sunlight, and the manufacturing costs are rather low (around 10 Euro/m2). Moreover, the degradation efficiency is higher compared to that of the biological method. This method exhibits great potential for practical applications owing to its easiness and low cost. If it can be applied extensively, the efficiency of wastewater treatment will be enhanced greatly.  相似文献   

15.
Electrolytic reactive barriers (e(-) barriers) consist of closely spaced permeable electrodes installed across a groundwater contaminant plume in a permeable reactive barrier format. Application of sufficient potential to the electrodes results in sequential oxidation and reduction of the target contaminant. The objective of this study was to quantify the mass distribution of compounds produced during sequential electrolytic oxidation and reduction of ordinance related compounds (ORCs) in a laboratory analog to an e(-) barrier. In this study, a series of column tests were conducted using RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and TNT (2,4,6-trinitrotoluene) as representative ORCs. The experimental setup consisted of a plexiglass column packed with quartz-feldspar sand to simulate aquifer conditions. A single set of porous electrodes consisting of expanded titanium-mixed metal oxide mesh was placed at the midpoint of the sand column as a one-dimensional analog to an e(-) barrier. Constant current of 20mA (variable voltage) was applied to the electrode set. Initial studies involved quantification of reaction products using unlabeled RDX and TNT. Approximately 70% of the influent concentration was transformed, in one pass, through sequential oxidation-reduction for both contaminants. Following the unlabeled studies, (14)C labeled RDX and TNT were introduced to determine the mass balance. An activity balance of up to 96% was achieved for both (14)C-RDX and (14)C-TNT. For both contaminants, approximately 21% of the influent activity was mineralized to (14)CO(2). The proportion of the initial activity in the dissolved fraction was different for the two test contaminants. Approximately 30% of the initial (14)C-RDX was recovered as unreacted in the dissolved phase. The balance of the (14)C-RDX was recovered as non-volatile, non-nitroso transformation products. None of the (14)C-RDX was sorbed to the column sand packing. For (14)C-TNT approximately 51% of the initial activity was recovered in the dissolved phase, the majority was unreacted TNT. The balance of the (14)C-TNT was either sorbed to the sand packing (approximately 24%) or dissolved/mineralized as unidentified ring cleavage products ( approximately 4%).  相似文献   

16.
The relationship between particle mass and the number of ambient air particles for the submicrometer size range was examined using a tapered element oscillating microbalance (TEOM) to determine the mass concentration, and a scan-ning mobility particle sizer (SMPS) to determine the volume concentration and total number of particles. The techniques were validated through their application to the estimation of submicrometer particle density for two laboratory generated aerosols of known bulk density (sodium chloride and di-2-ethylhexyl-sebacate). Further evaluation was done with the submicrometer fraction of laboratory generated environmental tobacco smoke (ETS), for which the estimated density of 1.18±0.06 g/cm3 was very close to the previously reported literature value of 1.12 g cm3. Finally, ambient air particles were examined and an estimate of the average submicrometer particle densities for these aerosols was found to vary from 1.2 to 1.8 g cm-3 depending on the time of day. This high variation in the density of the ambient air submicrometer particles, makes it hard to estimate the mass concentration from the SMPS number concentration with better than 60% uncertainty, based on an assumed density value.  相似文献   

17.
Snow was used as a collection medium to examine 1,3,5-hexahydro-1,3,5-trinitrotriazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues post-detonation of 60-, 81-, and 120-mm mortar rounds, 105- and 155-mm howitzer rounds, M67 hand grenades, 40-mm rifle grenades, and blocks of C4. Residue-covered snow samples were collected, processed, and analyzed for explosives without cross-contamination from previous detonations and other potential matrix interferences. Detonation trials were performed following standard military live-fire and blow-in-place techniques. When possible, replicate munitions were detonated under similar conditions to provide a more reliable estimation of the mass of unconsumed high explosive residues. Overall the amount of energetic residues deposited from live-fire detonations were considerably less than the energetic residues deposited by blow-in-place detonations.  相似文献   

18.
To achieve sustainable range management and avoid or minimize environmental contamination, the Army needs to know the amount of explosives deposited on ranges from different munitions and how these are degraded and transported under different geological and climatic conditions. The physical form of the deposited explosives has a bearing on this problem, yet the shapes and size distributions of the explosive particles remaining after detonations are not known. We collected residues from 8 high-order and 6 low-order non-tactical detonations of TNT-filled 155-mm rounds. We found significant variation in the amount of TNT scattered from the high-order detonations, ranging from 0.00001 to 2% of the TNT in the original shell. All low-order detonations scattered percent-level amounts of TNT. We imaged thousands of TNT particles and determined the size, mass and surface-area distributions of particles collected from one high-order and one low-order detonation. For the high-order detonation, particles smaller than 1 mm contribute most of the mass and surface area of the TNT scattered. For the low-order detonation, most of the scattered TNT mass was in the form of un-heated, centimeter-sized pieces whereas most of the surface area was again from particles smaller than 1 mm. We also observed that the large pieces of TNT disintegrate readily, giving rise to many smaller particles that can quickly dissolve. We suggest picking up the large pieces of TNT before they disintegrate to become point sources of contamination.  相似文献   

19.
We describe TNT's inhibition of RDX and HMX anaerobic degradation in contaminated soil containing indigenous microbial populations. Biodegradation of RDX or HMX alone was markedly faster than their degradation in a mixture with TNT, implying biodegradation inhibition by the latter. The delay caused by the presence of TNT continued even after its disappearance and was linked to the presence of its intermediate, tetranitroazoxytoluene. PCR–DGGE analysis of cultures derived from the soil indicated a clear reduction in microbial biomass and diversity with increasing TNT concentration. At high-TNT concentrations (30 and 90 mg/L), only a single band, related to Clostridium nitrophenolicum, was observed after 3 days of incubation. We propose that the mechanism of TNT inhibition involves a cytotoxic effect on the RDX- and HMX-degrading microbial population. TNT inhibition in the top active soil can therefore initiate rapid transport of RDX and HMX to the less active subsurface and groundwater.  相似文献   

20.
Flue gas emissions of wood and heavy fuel oil (HFO) fired district heating units of size range 4–15 MW were studied. The emission measurements included analyses of particle mass, number and size distributions, particle chemical compositions and gaseous emissions. Thermodynamic equilibrium calculations were carried out to interpret the experimental findings.In wood combustion, PM1 (fine particle emission) was mainly formed of K, S and Cl, released from the fuel. In addition PM1 contained small amounts of organic material, CO3, Na and different metals of which Zn was the most abundant. The fine particles from HFO combustion contained varying transient metals and Na that originate from the fuel, sulphuric acid, elemental carbon (soot) and organic material. The majority of particles were formed at high temperature (>800 °C) from V, Ni, Fe and Na. At the flue gas dew point (125 °C in undiluted flue gas) sulphuric acid condensed forming a liquid layer on the particles. This increases the PM1 substantially and may lead to partial dissolution of the metallic cores.Wood-fired grate boilers had 6–21-fold PM1 and 2–23-fold total suspended particle (TSP) concentrations upstream of the particle filters when compared to those of HFO-fired boilers. However, the use of single field electrostatic precipitators (ESP) in wood-fired grate boilers decreased particle emissions to same level or even lower as in HFO combustion. On the other hand, particles released from the HFO boilers were clearly smaller and higher in number concentration than those of wood boilers with ESPs. In addition, in contrast to wood combustion, HFO boilers produce notable SO2 emissions that contribute to secondary particle formation in the atmosphere. Due to vast differences in concentrations of gaseous and particle emissions and in the physical and chemical properties of the particles, HFO and wood fuel based energy production units are likely to have very different effects on health and climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号