首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
热解污泥制备生物炭是一种污泥资源化利用的主要处置方式,不同的反应条件对制得生物炭的品质存在显著的差异。以乙酸钾为添加剂,对城市脱水污泥(含水率80%)进行低温热解制备生物炭,考察了乙酸钾添加量、热解温度、热解停留时间及升温速率对生物炭性质的影响。通过N2吸附脱附、SEM、FT-IR等手段对原料污泥及生物炭进行了表征,实验结果表明,乙酸钾具有一定的扩孔作用,生物炭表面粗糙度明显增加,比表面积增大,吸附性能显著提高。当乙酸钾添加量4%,热解温度350℃,热解停留时间120 min,升温速率3℃·min~(-1)时生物炭的亚甲基蓝吸附量和比表面积分别为90.45 mg·g~(-1)、31.402 m2·g~(-1)。  相似文献   

2.
以乙酸钾为催化剂,采用外热式反应釜共热解制备污泥-花生壳生物炭,根据Box-Behnken中心组合实验设计原理,在单因素实验的基础上,以热解温度、花生壳添加量、催化剂添加量和热解时间为考察因素,以污泥-花生壳生物炭的碘吸附值为响应值,建立了考察因素和响应值之间的三次多项式模型。回归方程方差分析结果表明:花生壳添加量对生物炭碘吸附值的影响最显著;热解温度和热解时间、催化剂添加量和热解时间之间交互作用影响显著。调整后确定的最佳热解工艺条件为,热解温度375℃,花生壳添加量60%,催化剂添加量5%,热解时间66 min。在最优条件下,制备的生物炭碘吸附值为420.86 mg·g~(-1),比表面积(BET)为12.565 m~2·g~(-1),总孔容为0.028 28 cm~3·g~(-1),平均孔径为4.501 nm。  相似文献   

3.
以市政污泥为原料,在300、500和700℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd~(2+)的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在700℃下制备的污泥基生物炭对水溶液中Cd~(2+)的吸附效果优于其他制备温度下获得的生物炭,温度为298.15 K时,最大吸附容量为27.47 mg·g~(-1)。污泥基生物炭对Cd~(2+)的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd~(2+)的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd~(2+)的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

4.
采用剩余污泥为原料,分别于300、400、500℃缺氧条件下制备污泥生物炭,利用X射线能谱仪(EDS)、环境扫描电镜(SEM)、红外光谱(FTIR)对其进行表征,并探究不同吸附时间,不同pH和不同Pb~(2+)、Cd~(2+)浓度下污泥生物炭对Pb~(2+)、Cd~(2+)的吸附特性,以期拓展污泥资源化利用途径。结果表明,准二级动力学方程能更好地描述污泥生物炭对Pb~(2+)、Cd~(2+)的吸附过程,约30 h达到平衡,其吸附主要受化学吸附控制。随溶液初始pH的升高,重金属的吸附量呈先增高后降低趋势,在pH 4.5时对Pb~(2+)的吸附量最大,而Cd~(2+)在pH 6.5时最大。在25℃时,低温热解制备的污泥生物炭对Pb~(2+)、Cd~(2+)的吸附量为RC500RC400RC300,RC500的饱和吸附量分别为Pb~(2+)(14.39 mg·g~(-1))Cd~(2+)(1.45 mg·g~(-1)),污泥生物炭对重金属离子的吸附量与其水合离子半径呈负相关。  相似文献   

5.
污泥生物炭的磷吸附特性   总被引:1,自引:0,他引:1  
利用脱水污泥为原料在不同温度下热解制备污泥生物炭(sewage sludge biochar,SSBC),研究SSBC的磷吸附特征。700℃下制备的SSBC(B700)具有最好的磷吸附性能(5.93 mg·g~(-1),以P计),且效果优于其他类型的生物炭和活性炭,可以用作一种廉价的磷吸附剂。磷以稳定的形态吸附于SSBC上,SSBC吸附磷的机制主要是其表面的Ca O和Mg O与磷酸根结合形成稳定的磷酸盐沉淀。吸附条件优化表明,吸附温度升高促进SSBC对磷的吸附,SSBC吸附磷的适宜pH为6~8,共存离子CO2-3对磷吸附具有明显的抑制。采用Langmuir方程、Freundlich方程及Langmuir-Freundlich方程均能较好地拟合B700对磷的吸附,表明磷在SSBC表面的吸附可能受多种机制影响。  相似文献   

6.
以污泥为原料,硫酸钙为添加剂,采用热解法制备了硫酸钙/污泥基生物炭,考察了硫酸钙添加量、热解温度、升温速率及保温时间对生物炭中Pb、Ni形态分布的影响,并利用生态风险评价指数(RAC)对优化热解条件下制备的硫酸钙/污泥基生物炭中的Pb、Ni进行了生态风险评价。结果显示,优化热解条件为:硫酸钙添加量2.5%(质量分数)、热解温度750℃、升温速率2℃/min、保温时间15min。该优化热解条件下制备的硫酸钙/污泥基生物炭中的重金属Pb、Ni的生态风险分别为无风险、低风险,相对于污泥(低风险、中等风险)明显降低。  相似文献   

7.
以(NH_4)_2HPO_4活化沙柳纤维制备活性炭纤维,L_(16)(4~5)正交实验优化制备工艺条件,重点研究了活化温度对活性炭纤维结构的影响。同时应用扫描电镜(SEM)对其表面形貌进行表征,通过N_2吸附-脱附测定其孔结构。结果表明,随着活化温度的升高,活性炭得率逐渐减小,碘吸附值先增大后减小,在浸渍比2.5∶1、预氧化温度200℃、预氧化时间90 min、活化温度为800℃、活化时间60 min的条件下,可以制备出比表面积为1 304 m~2·g~(-1)、总孔容为1.004 cm~3·g~(-1)、得率为31.6%、碘吸附值为1 321 mg·g~(-1)的纤维状活性炭。  相似文献   

8.
以石化企业在污水处理过程中产生的干化剩余污泥为原料,大同烟煤作辅助添加料,采用化学活化法制备污泥-烟煤基活性炭,探讨了活化剂(ZnCl_2)用量、活化温度、活化时间等条件对所制备的活性炭性能的影响。以活性炭的碘吸附值为衡量指标,当污泥∶烟煤(质量比)=1∶1时获得制备污泥-烟煤活性炭的最佳工艺条件为:浸渍液为ZnCl_2∶原料(质量比)=2∶1,活化温度550℃,活化时间30 min,在该条件下制备的活性炭的碘吸附值为990 mg·g~(-1),比表面积为836m~2·g~(-1),产率为46.6%。同时,以苯酚为目标污染物,考察了所制备的污泥-烟煤基活性炭对苯酚的去除效果,结果表明:污泥-烟煤基活性炭投加量为2.0 g·L~(-1)时,4 h后达到吸附平衡,离子强度对吸附容量没有显著的影响,溶液pH在4~10范围内对苯酚有较好吸附,pH=6时苯酚吸附容量为138.9 mg·g~(-1)。与同类吸附剂相比,制备的污泥-烟煤基活性炭可高效吸附水溶液中的苯酚。  相似文献   

9.
响应面法优化甘蔗渣-污泥复合活性炭的制备工艺   总被引:4,自引:0,他引:4  
为了提高污泥活性炭的吸附性能以提升其实际应用价值,提出在污泥中掺杂甘蔗渣制备复合活性炭,并采用Plackett-Burman联用响应面法对影响复合活性炭碘值的条件进行筛选优化。通过Plackett-Burman实验筛选出热解温度、热解时间和甘蔗渣与污泥干重比为主要影响因素,对这3个因素进行Box-Behnken实验,经响应面优化得到影响碘值的二次响应曲面模型,模型显示热解温度与热解时间、热解温度与干重比的交互作用显著,并确定了最佳制备条件:热解温度550℃、热解时间30 min和干重比50%,此时复合活性炭碘值为814 mg/g,优于未优化条件下制备的复合活性炭。通过比表面积、孔结构和碘值的测定以及元素和扫描电镜分析得出,甘蔗渣的掺杂提高了复合活性炭的比表面积、微孔体积、碘值及含碳量。研究结果表明,甘蔗渣掺杂和制备条件优化是提高污泥活性炭吸附性能的有效手段。  相似文献   

10.
粉末活性炭(PAC)是应对季节性嗅味问题的主要处理技术,选择合适的活性炭、确定投加条件等因素对于水厂的高效运行等具有重要意义。针对南方某水厂存在的季节性嗅味问题,选择了国内9种常用PAC(包括3种煤质炭,3种木质炭,3种椰壳炭),对其吸附能力及处理成本进行比较,同时对该水厂在用PAC的处理效果、原有预氧化工艺(预加次氯酸钠及高锰酸钾)的影响等条件进行评价。结果表明:9种PAC中碘值为1 030mg·g~(-1)的椰壳炭吸附能力最强,对150 ng·L~(-1)的2-甲基异崁醇(2-MIB)吸附容量为6.2 ng·mg~(-1)。水厂的预氧化工艺会显著降低PAC对2-MIB、土臭素(GSM)的吸附效果(分别降低29.5%、31.6%)。综合处理效果和经济成本后,碘值为800 mg·g~(-1)的煤质炭对该水厂水源条件下的嗅味问题处理效果最优,在将2-MIB浓度由150 ng·L~(-1)处理至嗅阈值以下时,水的活性炭处理成本为0.3元·t~(-1)。  相似文献   

11.
将谷売生物炭用酸改性后负载磁性Fe_3O_4,得到一种新的吸附材料(BC~Fe)。通过单因素吸附实验,研究了时间、pH、添加量、浓度以及温度等参数对BCTe吸附废水中Pb~(2+)的影响,并对其进行比表面积及傅里叶红外光谱分析,探讨该磁性生物炭对Pb~(2+)的吸附机理。结果表明对Pb~(2+)的吸附能在2 h内基本达到平衡。在Pb~(2+)溶液初始浓度为100mg·L~(-1),pH=5.0温度为25℃,分別添加0.1g和0.15 g的BC-Fe于50 mL Pb~(2+)溶液中,单位质量的BC-Fe对溶液中Pb~(2+)的吸附量分别为40.6 mg·g~(-1)和33.2 mg·g~(-1)去除率分别为81.3%和99.9%。该吸附过程符合拟二级动力学模型,理论平衡吸附量为43.9 mg·g~(-1)。用Langmuir等温吸附方程能够很好地描述其吸附行为;热力学研究表明对Pb~(2+)的吸附过程是自发的吸热过程。  相似文献   

12.
为改善农药对河岸带土壤污染状况,进而防控农业面源污染,以玉米芯为原料制备生物质炭,利用模拟实验研究其对河岸带土壤中乙草胺和阿特拉津的吸附性能影响,并探讨了其吸附机理。结果表明:河岸带土壤中添加生物炭可使乙草胺和阿特拉津的吸附容量显著增强,其吸附热力学过程与Freundlich和Langmuir模型拟合均有较好的相关性。与对照土壤相比,添加质量分数为1.0%生物炭的土壤对乙草胺的最大吸附量从13.28μg·g~(-1)升高到769.23μg·g~(-1);添加质量分数为0.3%生物炭的土壤对阿特拉津的最大吸附量从70.92μg·g~(-1)升高到333.33μg·g~(-1)。伪二级动力学速率方程对河岸带土壤吸附乙草胺和阿特拉津的过程拟合效果较好,优于一级动力学速率模型的拟合结果,吸附量以及吸附速率均与土壤中生物炭投加量成正比。玉米芯生物炭可作为河岸带土壤的修复剂,降低乙草胺和阿特拉津的迁移性。  相似文献   

13.
采用上升流式缺氧颗粒污泥反应器成功驯化培养出了高性能的硫化物自养反硝化细菌颗粒污泥。反应器60 d完成污泥颗粒化,200 d后成熟的颗粒污泥平均粒径稳定在1 400μm,SVI5和SVI30分别平均为(21.6±0.3)m L·g~(-1)和(21.0±0.9)m L·g~(-1);系统稳定运行后,在污泥氮硫负荷分别为0.33 kg N·(m~3·d)-1和0.62 kg S·(m~3·d)-1,水力停留时间为5 h,脱氮效率保持在95%以上。与此同时,对接种污泥与颗粒污泥的物化特征进行对比分析发现,培养前后的污泥的无机组分与有机成分发生显著变化,Ca等元素参与并促进了颗粒污泥的形成,随着颗粒化的形成,蛋白质、多糖、脂质等物质均有不同程度的增长,使得颗粒污泥具有良好的脱氮性能,且结构和稳定性良好。  相似文献   

14.
以栗苞炭化料(C-BC)为原料,以NaOH为活化剂制备栗苞活化生物质炭(Na-BC),研究其对水中亚甲基蓝的吸附行为。选取炭碱比、活化温度和活化时间为影响因素,通过正交试验确定了最佳活化工艺,即炭碱比为1∶4,活化温度为800℃,活化时间为30 min,此时Na-BC的最大吸附量为609.38 mg·g~(-1)。对最优条件下制备的生物质炭进行SEM、BET等表征,比表面积达1 563.78 m~2·g~(-1),总孔容达1.452 cm~3·g~(-1)。吸附实验结果显示,吸附反应能较好用Langmuir模型和准二级动力学方程模型进行模拟,Na-BC对亚甲基蓝的吸附为自发吸热反应。通过热法与碱法再生处理饱和吸附生物质炭,再生后的Na-BC对亚甲基蓝具有较好的吸附能力。  相似文献   

15.
对玉米秸秆和花生壳炭化制备的生物炭,运用高锰酸钾进行改性,研究其对Cd~(2+)的吸附效果。通过批次吸附实验,考察了两种改性生物炭对Cd~(2+)吸附的初始浓度、pH值、接触时间等因素的影响。结果表明,在pH为6.0,Cd~(2+)浓度为100 mg·L~(-1),温度为20℃,吸附时间为12 h,吸附剂投加量为1.0 g·L~(-1)条件下,改性玉米秸秆炭和花生壳炭对Cd~(2+)的去除率分别为67.03%和46.10%,与未改性的生物炭相比,吸附率分别提高了3.8倍和6.2倍。改性玉米秸秆炭和花生壳炭对溶液中Cd~(2+)的吸附均符合Langmuir和Freundlich等温吸附模型,最大吸附量分别为68.97和55.55 mg·g-1。两种改性生物炭的吸附行为均符合准二级吸附动力学模型,说明其吸附以化学吸附为主。改性玉米秸秆炭和花生壳炭吸附Cd~(2+)后,可用NaOH溶液进行解吸,解吸4次后,对Cd~(2+)仍有较好的吸附效果,吸附量分别为31.40和24.10 mg·g~(-1)。这说明,高锰酸钾改性玉米秸秆炭和花生壳炭是一种吸附性能高且能够重复利用的去除溶液中Cd~(2+)的吸附材料。  相似文献   

16.
芦苇生物炭复合载体固定化微生物去除水中氨氮   总被引:2,自引:0,他引:2  
为了去除水体中的氮素并实现水生植物的有效利用,以芦苇生物炭为无机载体,结合海藻酸钠(SA)、聚乙烯醇(PVA)作为复合载体,固定驯化后的硝化污泥制成固定化颗粒,去除水中氨氮。通过考察固定化颗粒机械强度、酸碱稳定性及传质性能,探究了生物炭添加量及生物炭粒径对固定化颗粒降解氨氮性能的影响。结果表明,芦苇生物炭有丰富的孔结构,表面含有较多的含氧官能团和胺基、磺酸基、羧基和酰胺基等基团,从而具有良好的吸附性能以及较强的酸碱缓冲能力,有利于微生物的黏附和增殖。以添加芦苇生物炭作为复合载体,固定化颗粒的破损率降低了2.4%,酸碱稳定性和传质性分别提升12.5%和55.8%;在72 h内,可以使氨氮降解率达到96.3%。此外,不同粒径生物炭的固定化颗粒对氨氮的吸附量有显著影响,随着生物炭粒径从0.60 mm减小至0.15 mm,氨氮的最大吸附量可以从0.30 mg·g~(-1)增加到0.46 mg·g~(-1)。因此,在固定化微生物的载体中添加生物炭,可以提升固定化颗粒性能,打通微孔孔道从而有利于基质的运输和扩散;同时减小生物炭粒径,为微生物提供更多的吸附位点,从而显著提高固定化微生物对氨氮的降解能力。  相似文献   

17.
为研究Fe~0/Fe_3C@CS激发过一硫酸盐(PMS)调理对活性污泥脱水性的影响,采用单因子实验法确定了调理的最佳投药量以及该投药量下调理前后污泥胞外聚合物(EPS)中有机物含量及分布变化。结果表明:当Fe~0/Fe_3C@CS与PMS投加量分别为35.9 mg·g~(-1)(以TSS计)和0.43 g·g~(-1)(以TSS计)时,污泥的抽滤含水率下降至69.45%;调理过程对污泥紧密附着(TB-EPS)与松散附着层(LB-EPS)有破解作用,部分多糖和蛋白质迁移至黏液层,使得黏液层多糖和蛋白质的含量分别从0.12 g·g~(-1)、2.9 mg·g~(-1)升高至0.15 g·g~(-1)、7.75 mg·g~(-1)。腐殖酸从细胞相被释放至TB-EPS和LB-EPS中,其中TB-EPS腐殖酸含量由1.51 mg·g~(-1)升高至3.09 mg·g~(-1)。此外,调理后LBEPS和TB-EPS中的酪氨酸和微生物副产物被降解或迁移至黏液层,污泥EPS中总荧光强度由调理前的760.26×10~7 AU·nm~2降低至调理后的38.43×10~7 AU·nm~2,其中,LB-EPS的总荧光强度降至0.344 2×10~7 AU·nm~2,有利于污泥脱水性能的提高。调理后各典型有机物的荧光强度占比变化不同,其中酪氨酸的占比增加,而微生物副产物的占比下降。Fe~0/Fe_3C@CS激发PMS调理可有效提高活性污泥的脱水性能。  相似文献   

18.
以给水污泥为磷的吸附材料,采用静态吸附和动态吸附方法对比研究了干、湿状态下给水污泥对磷的吸附特性。静态吸附实验结果表明,给水污泥对磷的吸附过程以化学吸附为主,满足Freundlich等温吸附方程式。在300 K条件下,原始状态的湿污泥相比烘干后的污泥能更快地达到磷吸附平衡,且具有更高的理论饱和吸附量,分别为3.487mg·g~(-1)(相当于11.710mg·g~(-1),以干污泥计)和9.832mg·g~(-1)。长期动态吸附实验结果表明,原始状态的给水污泥对磷的实际饱和吸附量为3.065 mg·g~(-1),接近理论饱和吸附量。因此,原始状态的给水污泥可直接用作除磷材料,无需预先烘干处理。  相似文献   

19.
以生物质二层牛皮为原料,在控制热分解条件下制备了生物质基炭膜。利用TG/DTG、XRD、FT-IR、SEM、TEM和低温N_2吸附-脱附等方法对在不同炭化温度下(550~950℃)制备的生物质基炭膜形貌特征、孔隙结构及其表面化学性质进行了表征。考察了炭化温度、反应时间、溶液pH、加入量等因素对炭膜吸附溶液中铅离子的影响。表征结果表明:随着炭化温度的升高,生物质基炭膜碳微晶趋于石墨化发展,总孔容积持续增大,孔隙结构变得更加发达。实验结果表明:随炭化温度升高,生物质基炭膜对铅离子的吸附效果明显变好;在初始铅离子质量浓度为50 mg·L~(-1)、溶液pH为5.5、吸附剂加入量为1.5 g·L~(-1)、吸附时间为6 h的条件下,950℃下所制炭膜对铅离子有较好去除效果,去除率可达99.9%,吸附容量为32.76 mg·g~(-1)。  相似文献   

20.
以城市生活污水厂脱水污泥和木屑的混合物为原料,利用ZnCl_2为活化剂制备污泥活性炭。研究了活化温度、活化时间、固液比和活化剂浓度对吸附性能的影响。在活化温度为650℃、活化时间30 min、固液比1∶1.5、活化剂浓度为5 mol·L~(-1)的最佳工艺条件下,制备得到的活性炭碘吸附值为584.85 mg·g~(-1),利用扫描电镜可以观察到其发达的孔隙结构。将制备的污泥活性炭应用于兰炭废水处理中,结果表明,污泥活性炭的投加量为180 g·L~(-1),pH为7,吸附时间60min,挥发酚和氨氮的去除率分别为73.38%和48.27%,废水中污染物浓度明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号