首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热解污泥制备生物炭是一种污泥资源化利用的主要处置方式,不同的反应条件对制得生物炭的品质存在显著的差异。以乙酸钾为添加剂,对城市脱水污泥(含水率80%)进行低温热解制备生物炭,考察了乙酸钾添加量、热解温度、热解停留时间及升温速率对生物炭性质的影响。通过N2吸附脱附、SEM、FT-IR等手段对原料污泥及生物炭进行了表征,实验结果表明,乙酸钾具有一定的扩孔作用,生物炭表面粗糙度明显增加,比表面积增大,吸附性能显著提高。当乙酸钾添加量4%,热解温度350℃,热解停留时间120 min,升温速率3℃·min~(-1)时生物炭的亚甲基蓝吸附量和比表面积分别为90.45 mg·g~(-1)、31.402 m2·g~(-1)。  相似文献   

2.
以市政污泥为原料,在300、500和700℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd~(2+)的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在700℃下制备的污泥基生物炭对水溶液中Cd~(2+)的吸附效果优于其他制备温度下获得的生物炭,温度为298.15 K时,最大吸附容量为27.47 mg·g~(-1)。污泥基生物炭对Cd~(2+)的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd~(2+)的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd~(2+)的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

3.
污泥和茶渣都是典型的固体废弃物。将污泥和茶渣制备成生物炭,采用响应面分析(RSM)的方法优化生物炭的制备过程,主要考察温度、茶渣污泥配比和停留时间的影响,以得率和碘值作为评价生物炭的指标。结果表明:影响污泥-茶渣生物炭得率和吸附碘值的因素次序是:制备温度配比停留时间,温度和时间的交互影响较为明显。生物炭制备优化的条件是:制备温度为300℃,配比为0.7,停留时间为1.8 h,模型预测的得率和碘值分别是54.47%和624.07 mg·g~(-1),而实际测定的得率和碘值分别(53.50±0.50)%和(605.72±8.62)mg·g~(-1),生物炭有作为吸附剂的潜力。可见,RSM方法用于优化污泥-茶渣生物炭的制备是可行和合适的。  相似文献   

4.
对玉米秸秆和花生壳炭化制备的生物炭,运用高锰酸钾进行改性,研究其对Cd~(2+)的吸附效果。通过批次吸附实验,考察了两种改性生物炭对Cd~(2+)吸附的初始浓度、pH值、接触时间等因素的影响。结果表明,在pH为6.0,Cd~(2+)浓度为100 mg·L~(-1),温度为20℃,吸附时间为12 h,吸附剂投加量为1.0 g·L~(-1)条件下,改性玉米秸秆炭和花生壳炭对Cd~(2+)的去除率分别为67.03%和46.10%,与未改性的生物炭相比,吸附率分别提高了3.8倍和6.2倍。改性玉米秸秆炭和花生壳炭对溶液中Cd~(2+)的吸附均符合Langmuir和Freundlich等温吸附模型,最大吸附量分别为68.97和55.55 mg·g-1。两种改性生物炭的吸附行为均符合准二级吸附动力学模型,说明其吸附以化学吸附为主。改性玉米秸秆炭和花生壳炭吸附Cd~(2+)后,可用NaOH溶液进行解吸,解吸4次后,对Cd~(2+)仍有较好的吸附效果,吸附量分别为31.40和24.10 mg·g~(-1)。这说明,高锰酸钾改性玉米秸秆炭和花生壳炭是一种吸附性能高且能够重复利用的去除溶液中Cd~(2+)的吸附材料。  相似文献   

5.
以石化企业在污水处理过程中产生的干化剩余污泥为原料,大同烟煤作辅助添加料,采用化学活化法制备污泥-烟煤基活性炭,探讨了活化剂(ZnCl_2)用量、活化温度、活化时间等条件对所制备的活性炭性能的影响。以活性炭的碘吸附值为衡量指标,当污泥∶烟煤(质量比)=1∶1时获得制备污泥-烟煤活性炭的最佳工艺条件为:浸渍液为ZnCl_2∶原料(质量比)=2∶1,活化温度550℃,活化时间30 min,在该条件下制备的活性炭的碘吸附值为990 mg·g~(-1),比表面积为836m~2·g~(-1),产率为46.6%。同时,以苯酚为目标污染物,考察了所制备的污泥-烟煤基活性炭对苯酚的去除效果,结果表明:污泥-烟煤基活性炭投加量为2.0 g·L~(-1)时,4 h后达到吸附平衡,离子强度对吸附容量没有显著的影响,溶液pH在4~10范围内对苯酚有较好吸附,pH=6时苯酚吸附容量为138.9 mg·g~(-1)。与同类吸附剂相比,制备的污泥-烟煤基活性炭可高效吸附水溶液中的苯酚。  相似文献   

6.
采用剩余污泥为原料,分别于300、400、500℃缺氧条件下制备污泥生物炭,利用X射线能谱仪(EDS)、环境扫描电镜(SEM)、红外光谱(FTIR)对其进行表征,并探究不同吸附时间,不同pH和不同Pb~(2+)、Cd~(2+)浓度下污泥生物炭对Pb~(2+)、Cd~(2+)的吸附特性,以期拓展污泥资源化利用途径。结果表明,准二级动力学方程能更好地描述污泥生物炭对Pb~(2+)、Cd~(2+)的吸附过程,约30 h达到平衡,其吸附主要受化学吸附控制。随溶液初始pH的升高,重金属的吸附量呈先增高后降低趋势,在pH 4.5时对Pb~(2+)的吸附量最大,而Cd~(2+)在pH 6.5时最大。在25℃时,低温热解制备的污泥生物炭对Pb~(2+)、Cd~(2+)的吸附量为RC500RC400RC300,RC500的饱和吸附量分别为Pb~(2+)(14.39 mg·g~(-1))Cd~(2+)(1.45 mg·g~(-1)),污泥生物炭对重金属离子的吸附量与其水合离子半径呈负相关。  相似文献   

7.
以污泥为原料,硫酸钙为添加剂,采用热解法制备了硫酸钙/污泥基生物炭,考察了硫酸钙添加量、热解温度、升温速率及保温时间对生物炭中Pb、Ni形态分布的影响,并利用生态风险评价指数(RAC)对优化热解条件下制备的硫酸钙/污泥基生物炭中的Pb、Ni进行了生态风险评价。结果显示,优化热解条件为:硫酸钙添加量2.5%(质量分数)、热解温度750℃、升温速率2℃/min、保温时间15min。该优化热解条件下制备的硫酸钙/污泥基生物炭中的重金属Pb、Ni的生态风险分别为无风险、低风险,相对于污泥(低风险、中等风险)明显降低。  相似文献   

8.
热解温度和时间对生物干化污泥生物炭性质的影响   总被引:5,自引:0,他引:5  
污泥热解制备生物炭是一种很有潜力的污泥资源化处置方式,然而,生物炭产量和品质因污泥原料性质、热解条件(如热解温度、时间)的不同而存在显著差异。以生物干化污泥为主要研究对象,系统考察了热解温度及时间等热解因素对生物炭品质的影响。实验结果表明,随着热解温度的升高(300~700℃),热解时间的增加(2~4 h),生物炭产率均下降。低温热解(300℃)生物炭,偏酸性,而高温热解时(700℃)生物炭,偏碱性。生物炭N含量随着热解温度的升高、热解时间的增加而降低,而P、K及微量元素随着热解温度的升高,热解时间的增加而增加。DTPA浸提结果表明,高温热解明显降低了生物炭中微量元素的生物有效性。  相似文献   

9.
以城市生活污水厂脱水污泥和木屑的混合物为原料,利用ZnCl_2为活化剂制备污泥活性炭。研究了活化温度、活化时间、固液比和活化剂浓度对吸附性能的影响。在活化温度为650℃、活化时间30 min、固液比1∶1.5、活化剂浓度为5 mol·L~(-1)的最佳工艺条件下,制备得到的活性炭碘吸附值为584.85 mg·g~(-1),利用扫描电镜可以观察到其发达的孔隙结构。将制备的污泥活性炭应用于兰炭废水处理中,结果表明,污泥活性炭的投加量为180 g·L~(-1),pH为7,吸附时间60min,挥发酚和氨氮的去除率分别为73.38%和48.27%,废水中污染物浓度明显降低。  相似文献   

10.
为改善农药对河岸带土壤污染状况,进而防控农业面源污染,以玉米芯为原料制备生物质炭,利用模拟实验研究其对河岸带土壤中乙草胺和阿特拉津的吸附性能影响,并探讨了其吸附机理。结果表明:河岸带土壤中添加生物炭可使乙草胺和阿特拉津的吸附容量显著增强,其吸附热力学过程与Freundlich和Langmuir模型拟合均有较好的相关性。与对照土壤相比,添加质量分数为1.0%生物炭的土壤对乙草胺的最大吸附量从13.28μg·g~(-1)升高到769.23μg·g~(-1);添加质量分数为0.3%生物炭的土壤对阿特拉津的最大吸附量从70.92μg·g~(-1)升高到333.33μg·g~(-1)。伪二级动力学速率方程对河岸带土壤吸附乙草胺和阿特拉津的过程拟合效果较好,优于一级动力学速率模型的拟合结果,吸附量以及吸附速率均与土壤中生物炭投加量成正比。玉米芯生物炭可作为河岸带土壤的修复剂,降低乙草胺和阿特拉津的迁移性。  相似文献   

11.
以栗苞炭化料(C-BC)为原料,以NaOH为活化剂制备栗苞活化生物质炭(Na-BC),研究其对水中亚甲基蓝的吸附行为。选取炭碱比、活化温度和活化时间为影响因素,通过正交试验确定了最佳活化工艺,即炭碱比为1∶4,活化温度为800℃,活化时间为30 min,此时Na-BC的最大吸附量为609.38 mg·g~(-1)。对最优条件下制备的生物质炭进行SEM、BET等表征,比表面积达1 563.78 m~2·g~(-1),总孔容达1.452 cm~3·g~(-1)。吸附实验结果显示,吸附反应能较好用Langmuir模型和准二级动力学方程模型进行模拟,Na-BC对亚甲基蓝的吸附为自发吸热反应。通过热法与碱法再生处理饱和吸附生物质炭,再生后的Na-BC对亚甲基蓝具有较好的吸附能力。  相似文献   

12.
以市政污泥为原料,在300、400、500、600、700和800℃无氧气氛下,热解制备了污泥基生物炭。采用BET、SEM、XPS、FT-IR对不同热解温度下污泥炭进行了表征分析;研究了不同热解温度下污泥炭对污水中有机物的吸附效果和动力学;探究了热解温度对污泥炭微观调控下吸附实际水体中有机物的匹配机质。结果表明,随热解温度的升高,C—H、C—C结合比例降低,C=C、C—O=C比例升高,芳香化程度增加,且比表面积、孔容及表面粗超度均有所增加,1~2 nm微孔比例增多,介孔向微孔发展趋势逐渐明显。800℃热解温度条件下制备的污泥炭对二沉池出水中有机物的吸附效果优于其他温度下制备的污泥炭。吸附温度为298.15 K时,最大吸附容量为282.5 mg·g~(-1),且符合准二级吸附动力学。高温下制备的污泥炭对水体中腐殖酸和富里酸具有较强的吸附效能。这主要是由于表面丰富的含氧官能团、芳香键与腐殖酸和富里酸发生了氢键、化学键缔合作用和π-π共轭作用,同时污泥碳表面发达的孔隙结构和较大的比表面积也提供了更多的活性结合位点,促进了污染物的吸附。  相似文献   

13.
利用Fenton活化法活化脱水污泥制备活性炭,研究了Fenton试剂投加量、活化时间、炭化温度、炭化时间和升温速率5种因素对制备污泥炭的影响。污泥炭的最佳制备工艺:Fenton试剂投加量为150 m L,活化时间为2.5 h,炭化温度为350℃,炭化时间为1 h,升温速率为20℃·min-1。污泥炭碘吸附值达到331.90 mg·g-1,BET比表面积为24.265 m~2·g-1。总孔容为0.146 cm~3·g-1,微孔率为17%。分析了吸附时间、pH值和吸附温度3种因素对污泥炭吸附水中Cr(Ⅵ)的影响。在吸附时间为90 min,pH=3,吸附温度为50℃时,污泥炭对Cr(Ⅵ)的吸附量为9.93 mg·g-1。吸附动力学符合准二级动力学模型描述,吸附过程符合Langmuir和Tempkin等温吸附模型描述。  相似文献   

14.
将谷売生物炭用酸改性后负载磁性Fe_3O_4,得到一种新的吸附材料(BC~Fe)。通过单因素吸附实验,研究了时间、pH、添加量、浓度以及温度等参数对BCTe吸附废水中Pb~(2+)的影响,并对其进行比表面积及傅里叶红外光谱分析,探讨该磁性生物炭对Pb~(2+)的吸附机理。结果表明对Pb~(2+)的吸附能在2 h内基本达到平衡。在Pb~(2+)溶液初始浓度为100mg·L~(-1),pH=5.0温度为25℃,分別添加0.1g和0.15 g的BC-Fe于50 mL Pb~(2+)溶液中,单位质量的BC-Fe对溶液中Pb~(2+)的吸附量分别为40.6 mg·g~(-1)和33.2 mg·g~(-1)去除率分别为81.3%和99.9%。该吸附过程符合拟二级动力学模型,理论平衡吸附量为43.9 mg·g~(-1)。用Langmuir等温吸附方程能够很好地描述其吸附行为;热力学研究表明对Pb~(2+)的吸附过程是自发的吸热过程。  相似文献   

15.
污泥生物炭的磷吸附特性   总被引:1,自引:0,他引:1  
利用脱水污泥为原料在不同温度下热解制备污泥生物炭(sewage sludge biochar,SSBC),研究SSBC的磷吸附特征。700℃下制备的SSBC(B700)具有最好的磷吸附性能(5.93 mg·g~(-1),以P计),且效果优于其他类型的生物炭和活性炭,可以用作一种廉价的磷吸附剂。磷以稳定的形态吸附于SSBC上,SSBC吸附磷的机制主要是其表面的Ca O和Mg O与磷酸根结合形成稳定的磷酸盐沉淀。吸附条件优化表明,吸附温度升高促进SSBC对磷的吸附,SSBC吸附磷的适宜pH为6~8,共存离子CO2-3对磷吸附具有明显的抑制。采用Langmuir方程、Freundlich方程及Langmuir-Freundlich方程均能较好地拟合B700对磷的吸附,表明磷在SSBC表面的吸附可能受多种机制影响。  相似文献   

16.
生物炭对土壤吸附邻苯二甲酸二乙酯的影响   总被引:1,自引:0,他引:1  
选择花生壳为原材料,采用限氧升温法在450、700℃温度下分别热解2、4、6 h制备6种生物炭,在对其表面性质和元素组成进行分析的基础上,重点考察生物炭对土壤吸附邻苯二甲酸二乙酯(diethyl phthalate,DEP)的影响。结果表明:生物炭的比表面积和总孔体积随着热解温度的升高而增加,热解时间的延长也会提高比表面积和总孔体积,而4 h是较为适宜的热解时间;生物炭中元素组成主要受热解温度的影响,热解时间的作用很小,热解温度的升高使生物炭的芳香性增强,极性降低;添加生物炭能显著提高土壤对DEP的吸附能力;Langmuir模型和Freundlich模型均能较好地拟合添加生物炭土壤对DEP的吸附特征;在不同的平衡浓度条件下,生物炭对土壤吸附DEP的贡献率介于82.07%~99.49%之间,表明生物炭对土壤中DEP的吸附发挥着主导作用。相关分析发现,吸附参数ΔKoc与生物炭的比表面积和总孔体积具有显著相关性,提高比表面积和改善孔隙结构可以增强生物炭对DEP的吸附能力。  相似文献   

17.
以污水厂污泥为主要原料,掺杂不同量的废旧碱性电池电极材料,采用ZnCl_2活化法制备出废旧碱性电池-活性污泥炭,表征分析污泥炭样品的碘吸附值、BET、FT-IR、SEM-EDX、XRD和Zeta电位,并进行污泥炭Cd~(2+)吸附实验。结果表明,电池材料掺杂量为25%时,改性污泥炭吸附性能最优,碘吸附值和比表面积分别达到543.0 mg·g~(-1)和426.5 m~2·g~(-1),中孔孔径集中在3~4 nm左右,Zeta电位为-16.30 m V;对比纯污泥炭,废电池-污泥炭吸附金属离子性能更优,Cd~(2+)吸附量增加了近60%,而ZnCl_2活化剂用量减少了40%;回归分析发现,准二级动力学和Langmuir等温方程式适用于描述废电池-污泥炭对Cd~(2+)的吸附行为。  相似文献   

18.
生物炭对水中Pb(Ⅱ)和Zn(Ⅱ)的吸附特征   总被引:8,自引:0,他引:8  
选取花生壳和玉米秸秆为原材料,在不同温度下制备生物炭,与市售的银杉木炭一起作为吸附剂探究其对水溶液中Pb(Ⅱ)和Zn(Ⅱ)的吸附能力和特性。用FTIR和扫描电镜表征生物炭表面性质。实验考察了吸附时间、溶液初始pH、初始浓度对吸附的影响。结果表明,在室温25℃和pH 5.0条件下,生物炭对Pb(Ⅱ)、Zn(Ⅱ)的吸附量随时间的增加而增大,在24 h后基本达到平衡,并且生物炭对Pb(Ⅱ)、Zn(Ⅱ)的吸附动力学符合准二级动力学方程;溶液初始pH显著影响生物炭对Pb(Ⅱ)和Zn(Ⅱ)的吸附,其中对Pb(Ⅱ)和Zn(Ⅱ)的最佳吸附pH分别为5.0和6.0;花生壳生物炭和玉米秸秆生物炭对Pb(Ⅱ)的等温吸附符合Langmuir模型和Freundlich模型,而对Zn(Ⅱ)的等温吸附Freundlich模型拟合效果更佳;银杉木炭对Pb(Ⅱ)和Zn(Ⅱ)的等温吸附更适用于Langmuir模型。另外,随着生物炭制备时热解温度的升高,生物炭对Pb(Ⅱ)和Zn(Ⅱ)的吸附量增加,且各生物炭对Pb(Ⅱ)的最大吸附量远大于其对Zn(Ⅱ)的最大吸附量。不同生物炭对Pb(Ⅱ)的吸附能力有明显差异,表现为:花生壳生物炭玉米秸秆炭银杉木炭,而对Zn(Ⅱ)的吸附力差异不明显。  相似文献   

19.
以生物质混合压缩颗粒为原料,在600~900℃活化温度下,循环利用热解气制备活性炭,考察热解气的活化作用及活性炭对农药甲萘威的吸附性能。结果表明:热解气具有明显的活化作用,经过活化的炭与热解炭相比孔结构更加发达,表面更加粗糙;活化温度对活性炭理化性质具有显著影响,随温度升高,活性炭芳香性升高,极性降低,含氧官能团逐渐减少,比表面积由239.00 m~2·g~(-1)增加到629.20 m~2·g~(-1),平均孔径由5.438 nm减小至3.005 nm;Freundlich模型能够很好地拟合活性炭对甲萘威的吸附等温线,随活化温度升高,活性炭吸附能力增大;吸附动力学更符合伪二级反应动力学模型,60 h内基本实现吸附平衡;当活化温度为800℃,单位原料对甲萘威的吸附量最大。  相似文献   

20.
针对传统技术制备污泥活性炭的比表面积不高、吸附值低等不足,通过在污泥中添加核桃壳以改善污泥原料缺陷,研究了活化剂种类、核桃壳加量、活化温度、活化时间、活化剂浓度及浸渍比等影响活性炭吸附能力的制备条件。在优化后的条件下制备出了高吸附性能的生物质污泥复合活性炭。结果表明:选择氯化锌作为活化剂,核桃壳加量20%、活化温度500℃、活化时间60 min、活化剂浓度2.5 mol·L-1、浸渍比1∶2.5为最优化制备条件。制备出的生物质污泥复合活性炭碘吸附值为574.11 mg·g-1,产率为43.93%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号