首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mediated electrochemical oxidation (MEO) process using cerium(IV) in methanesulphonic acid (MSA) as the oxidizing medium was employed for the mineralization of phenol in batch and continuous feeding modes. Although nitric acid was an extensively studied electrolyte for organic mineralization reactions in MEO processes it does possess the problem of NO(x) gas production during the reduction of nitric acid in the cathode compartment of the electrochemical cell. This problem could be circumvented by proper choice of the electrolyte medium such as MSA. The mediator cerium in MSA solution was first oxidized to higher oxidation state using an electrochemical cell. The produced Ce(IV) oxidant was then used for the destruction of phenol. It was found that phenol could be mineralized to CO2 by Ce(IV) in MSA. The evolved CO2 was continuously measured and used for the calculation of destruction efficiency. The destruction efficiency was observed to be 85% based on CO2 evolution for 1000 ppm phenol solution at 80 degrees C in continuous feed mode.  相似文献   

2.
This work deals with a new abiotic oxidation process designed as a suitable pre-treatment step within a biological depuration of wastewater containing phenol or its derivatives (o-cresol, 2-chlorophenol and p-nitrophenol) or aniline. The reaction was carried out in a stirred tank reactor at 20 degrees C and atmospheric pressure in presence of the organic compound, 150mgl(-1), zero valent iron particles (10g), ethylenediamine tetraacetic acid (EDTA, 101mgl(-1)) and air. The experimental results show that 85% of phenol conversion can be achieved after 360min. 2-Chlorophenol was found to be more easily degradable and it is completely eliminated after 300min. The oxidation of o-cresol and aniline behaved more closely to phenol obtaining after 360min 70% and 68% of conversion respectively. p-Nitrophenol was a very refractory compound, giving only 28% of conversion after 360min. Moreover, the influence of some operating variables was studied over the following ranges: temperature from 20 to 50 degrees C, initial phenol concentration from 150 to 1000mgl(-1), EDTA concentration from 50 to 200mgl(-1) and iron particles from 5 to 20g. As expected, temperature strongly enhances phenol conversion. Also, an increase of the catalyst to phenol ratio or the iron or EDTA to phenol ratio improves the reaction rate. A preliminary kinetic analysis of the data shown that the rate of phenol disappearance is not first order with respect to the phenol.  相似文献   

3.
Enhanced chemical oxidation of aromatic hydrocarbons in soil systems   总被引:5,自引:0,他引:5  
Kang N  Hua I 《Chemosphere》2005,61(7):909-922
Fenton's destruction of benzene, toluene, ethylbenzene, and xylene (BTEX) was investigated in soil slurry batch reactors. The purpose of the investigation was to quantify the enhancement of oxidation rates and efficiency by varying process conditions such as iron catalyst (Fe(II) or Fe(III); 2, 5, and 10mM), hydrogen peroxide (H2O2; 30, 150, 300 mM), and metal chelating agents (l-ascorbic acid, gallic acid, or N-(2-hydroxyethyl)iminodiacetic acid). Rapid contaminant mass destruction (97% after 3h) occurred in the presence of 300 mM H2O2 and 10 mM Fe(III). An enhanced removal rate (>90% removal after 15 min and 95% removal after 3h) was also observed by combining Fe(III), N-(2-hydroxyethyl)iminodiacetic acid and 300 mM H2O2. The observed BTEX mass removal rate constants (3.6-7.8 x 10(-4)s(-1)) were compared to the estimated rate constants (4.1-10.1 x 10(-3)s(-1)). The influence of non-specific oxidants loss (by reaction with iron hydroxides and soil organic matter) was also explored.  相似文献   

4.
《Chemosphere》2009,74(11):1708-1715
In this paper, the oxidation of tert-butyl formate (TBF) in aqueous solution by an ozone/UV process was described. The oxidation process was investigated experimentally in a semibatch reactor. The results of the study indicated that the ozone/UV process was very effective in oxidizing TBF. tert-Butyl alcohol (TBA), hydroxy-iso-butyraldehyde (HiBA), acetone, formaldehyde, and formic acid were identified as major primary intermediates during the oxidation of TBF. About 90% organic carbon balance was obtained indicating that most reaction intermediates have been identified and quantified. Some of the primary intermediates were also oxidized in the ozone/UV system. Accordingly, HiBA, acetone, formaldehyde, and formic acid were the primary intermediates of TBA oxidation. The oxidation of acetone in the ozone/UV system generated formaldehyde, pyruvaldehyde, acetic acid, formic acid as primary intermediates. It was also observed that the reaction intermediates formed during the oxidation of TBF react well in the ozone/UV system and complete mineralization could be achieved by the process.  相似文献   

5.
Garoma T  Gurol MD  Thotakura L  Osibodu O 《Chemosphere》2008,73(11):1708-1715
In this paper, the oxidation of tert-butyl formate (TBF) in aqueous solution by an ozone/UV process was described. The oxidation process was investigated experimentally in a semibatch reactor. The results of the study indicated that the ozone/UV process was very effective in oxidizing TBF. tert-Butyl alcohol (TBA), hydroxy-iso-butyraldehyde (HiBA), acetone, formaldehyde, and formic acid were identified as major primary intermediates during the oxidation of TBF. About 90% organic carbon balance was obtained indicating that most reaction intermediates have been identified and quantified. Some of the primary intermediates were also oxidized in the ozone/UV system. Accordingly, HiBA, acetone, formaldehyde, and formic acid were the primary intermediates of TBA oxidation. The oxidation of acetone in the ozone/UV system generated formaldehyde, pyruvaldehyde, acetic acid, formic acid as primary intermediates. It was also observed that the reaction intermediates formed during the oxidation of TBF react well in the ozone/UV system and complete mineralization could be achieved by the process.  相似文献   

6.
Ko KB  Byun Y  Cho M  Namkung W  Shin DN  Koh DJ  Kim KT 《Chemosphere》2008,71(9):1674-1682
The influence of HCl on the oxidation of gaseous elemental mercury (Hg0) has been investigated using a dielectric barrier discharge (DBD) plasma process, where the temperature of the plasma reactor and the composition of gas mixtures of HCl, H2O, NO, and O2 in N2 balance have been varied. We observe that Cl atoms and Cl2 molecules, created by the DBD process, play important roles in the oxidation of Hg0 to HgCl2. The addition of H2O to the gas mixture of HCl in N2 accelerates the oxidation of Hg0, although no appreciable effect of H2O alone on the oxidation of Hg0 has been observed. The increase of the reaction temperature in the presence of HCl results in the reduction of Hg0 oxidation efficiency probably due to the deterioration of the heterogeneous chemical reaction of Hg0 with chlorinated species on the reactor wall. The presence of NO shows an inhibitory effect on the oxidation of Hg0 under DBD of 16% O2 in N2, indicating that NO acts as an O and O3 scavenger. At the composition of Hg0 (280 microg m(-3)), HCl (25 ppm), NO (204 ppm), O2 (16%) and N2 (balance) and temperature 90 degrees C, we obtain the nearly complete oxidation of Hg0 at a specific energy density of 8 J l(-1). These results lead us to suggest that the DBD process can be viable for the treatment of mercury released from coal-fired power plants.  相似文献   

7.
Method for predicting photocatalytic oxidation rates of organic compounds   总被引:1,自引:0,他引:1  
In designing a photocatalytic oxidation (PCO) system for a given air pollution source, destruction rates for volatile organic compounds (VOCs) are required. The objective of this research was to develop a systematic method of predicting PCO rate constants by correlating rate constants with physical-chemical characteristics of compounds. Accordingly, reaction rate constants were determined for destruction of volatile organics over a titanium dioxide (TiO2) catalyst in a continuous mixed-batch reactor. It was found that PCO rate constants for alkanes and alkenes vary linearly with gas-phase ionization potential (IP) and with gas-phase hydroxyl radical reaction rate constant. The correlations allow rates of destruction of compounds not tested in this research to be predicted based on physical-chemical characteristics.  相似文献   

8.
An improved photocatalytic oxidation (PCO) reactor model was developed to analyze the removal of volatile organic compounds (VOCs) in indoor air. One new parameter, the average total removing factor Kt, together with the other two parameters, the number of mass transfer units NTUm and the fractional conversion epsilon, are found to be the main parameters influencing the photooxidation performance of PCO reactors. Three new parameters, the ideal reaction number of mass transfer units, NTUm,ir; the ideal reaction fractional conversion, epsilonir; and the reaction effectiveness, eta, also are defined. These concepts are helpful to the structural design and optimization for PCO reactors. The application of the model in designing a plate-type PCO reactor is demonstrated. This study shows that the present model is an effective tool for designing PCO reactors and for evaluating VOC removal performance of available PCO reactors.  相似文献   

9.
根据滑动弧放电等离子体适于降解高浓度有机物废气的特性,结合活性炭吸附法,提出了吸附器的吸附浓缩和热脱附-等离子体氧化净化有机废气的方法。在活性炭吸附过程中,最初2 h内甲苯净化率达到100%,随着时间的增加净化率下降;在热脱附滑动弧放电等离子体净化过程中,甲苯降解效率最高为97.3%。将滑动弧放电等离子体反应器出口气相产物收集进行FT-IR检测,发现放电后有CO2、CO、H2O和NO2产生,并分析了甲苯的降解机理。  相似文献   

10.
The mass transfer of naphthalene vapor to water droplets in air was studied in the presence of ozone (O3) in the gas phase. A falling droplet reactor with water droplets of diameters 55, 91, and 182 microm was used for the study. O3 reacted with naphthalene at the air-water interface, thereby decreasing the mass transfer resistance and increasing the rate of uptake of naphthalene into the droplet. A Langmuir-Hinshelwood reaction mechanism at the air-water interface satisfactorily described the surface reaction. The first-order surface reaction rate constant, ks, increased with decreasing droplet size. Three organic intermediates were identified in the aqueous phase as a result of ozonation of naphthalene at the surface of the droplet indicating both peroxidic and nonperoxidic routes for ozonation. The presence of an organic carbon surrogate (fulvic acid) increased both the partition constant of naphthalene and the surface reaction rate of O3. The heterogeneous oxidation of naphthalene by O3 on the droplet was 15 times faster than the homogeneous oxidation by O3 in the bulk air phase, whereas it was only 0.08 times the homogeneous gas-phase oxidation by hydroxyl radicals under atmospheric conditions.  相似文献   

11.
The supercritical water oxidation (SCWO) of industrial tannery sludge was investigated to understand the simultaneous destruction of organic pollutants and recovery of high content chromium. Experiments were performed in a batch reactor at temperatures of 350–500 °C, reaction time of 150–300 s and different oxygen ratios, to exhibit the effect of operation conditions. Results showed that removal efficiency of chemical oxygen demand (COD) increased with higher temperature, larger oxidant amount and reaction time; a maximum value of 96% was obtained. Meanwhile, destruction yield was much higher under supercritical conditions than that in subcritical water. In addition, removal efficiency of Cr from sludge reached more than 98% under all conditions; higher temperature played a positive role. Further, leaching toxicity tests of heavy metals in solid products were conducted based on toxicity characteristic leaching procedure. All heavy metals except nickel showed a greatly reduced leaching toxicity through their stabilization. The chromium oxide recovered in ash was amorphous below 550 °C, so that the structure of Cr could not be identified by X-ray diffraction pattern. Special attention should be paid on nickel as its leaching toxicity increased due to the corrosion of reactor surface under severe reaction conditions.  相似文献   

12.
Oxidation of TNT by photo-Fenton process   总被引:4,自引:0,他引:4  
Liou MJ  Lu MC  Chen JN 《Chemosphere》2004,57(9):1107-1114
A series of photo-Fenton reactions have been performed for the degradation of 2,4,6-trinitrotoluene (TNT) in a 4.2-l reactor. The degradation reaction rate of TNT followed a pseudo-first-order behavior; and the rate constants for 2.4mW cm(-2)UV only, 2.4mW cm(-2)UV/H(2)O(2), Fenton, photo-Fenton (2.4mW cm(-2)) and photo-Fenton (4.7mW cm(-2)) were 0.002min(-1), 0.007min(-1), 0.014min(-1), 0.025min(-1) and 0.037min(-1), respectively. Increasing the intensity of UV light, and the concentrations of ferrous ions and hydrogen peroxide promoted the oxidation rate under the experimental conditions in this study. The weighting factor (f), the Fe(II)-promoted efficiency (r) and the promoted-UV light efficiency (p) were calculated to clarify their effects on the TNT oxidation. Moreover, the inhibition effect of hydroxyl radical was also observed in both Fenton and photo-Fenton oxidation when the concentration of Fe(II) were higher than 2.88mM. Solid phase micro-extraction was first applied to the separation of the organic byproducts from TNT oxidation. GC/MS was employed to identify the byproducts during the Fenton and photo-Fenton oxidation of TNT. These compounds were clarified as 1,3,5-trinitrobenzene, 1-methyl-2,4-dinitrobenzene 2,5-dinitrobenzoic acid and 1,3-dinitrobenzene. By these byproducts, the mechanisms of the methyl group oxidation, decarboxylation, aromatic ring breakage, and hydrolysis can be recognized and demonstrated. The pathway of TNT oxidation by photo-Fenton process was also proposed in this study.  相似文献   

13.
In the Ag(II)/Ag(I) based mediated electrochemical oxidation (MEO) process, the spent waste from the electrochemical cell, which is integrated with the scrubber columns, contains high concentrations of precious silver as dissolved ions in both the anolyte and the catholyte. This work presents an electrochemical developmental study for the recovery of silver from simulated waste water from Ag(II)/Ag(I) based MEO process. Galvanostatic method of silver deposition on Ti cathode in an undivided cell was used, and the silver recovery rate kinetics of silver deposition was followed. Various experimental parameters, which have a direct bearing on the metal recovery efficiency, were optimized. These included studies with the nitric acid concentration (0.75-6M), the solution stirring rate (0-1400 rpm), the inter-electrode distance between the anode and the cathode (2-8 cm), the applied current density (29.4-88.2 mA cm(-2)), and the initial Ag(I) ion concentration (0.01-0.2M). The silver recovered by the present electrodeposition method was re-dissolved in 6M nitric acid and subjected to electrooxidation of Ag(I) to Ag(II) to ascertain its activity towards Ag(II) electrogeneration from Ag(I), which is a key factor for the efficient working of MEO process. Our studies showed that the silver metal recovered by the present electrochemical deposition method could be reused repeatedly for MEO process with no loss in its electrochemical activity. Some work on silver deposition from sulfuric acid solution of different concentrations was also done because of its promising features as the catholyte in the Ag(II) generating electrochemical cell used in MEO process, which include: (i) complete elimination of poisonous NO(x) gas liberation in the cathode compartment, (ii) reduced Ag(+) ion migration across Nafion membrane from anolyte to catholyte thereby diminished catholyte contamination, and (iii) lower cell voltage and hence lesser power consumption.  相似文献   

14.
在间歇式超临界水氧化系统中对草甘膦农药废水进行降解实验。选取温度、反应时间、过氧量3个量为因素量,总有机碳(TOC)去除率为响应量进行中心组合设计(CCD)。在实验的基础上,利用响应面分析法(RSM)对实验结果进行分析及参数优化:建立了TOC去除率与各个因素关系的二次多项式数学模型;分析了各个因素单独的及相互作用对TOC去除率的影响;优化结果表明,在温度483℃、反应时间29.2 min、过氧量148.4%的条件下,达到了最佳效果,此时TOC的去除率为100%。  相似文献   

15.
Jo WK  Park KH 《Chemosphere》2004,57(7):555-565
The current study evaluated the technical feasibility of applying TiO2 photocatalysis to the removal of low-ppb concentrations of volatile organic compounds (VOCs) commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) for VOCs, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) in relation to the PCO destruction efficiencies of the selected target VOCs. None of the target VOCs exhibited any significant dependence on the RH, which is inconsistent with a previous study where, under conditions of low humidity and a ppm toluene inlet level, a drop in the PCO efficiency was reported with a decreasing humidity. However, the other four parameters (HD, RM, FT, and IPS) were found to be important for better VOC removal efficiencies as regards the application of TiO2 photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VOCs at concentrations associated with non-occupational indoor air quality issues was up to nearly 100%, and the CO generated during PCO was a negligible addition to indoor CO levels. Accordingly, a PCO reactor would appear to be an important tool in the effort to improve non-occupational indoor air quality.  相似文献   

16.
Lim TT  Chui PC  Goh KH 《Chemosphere》2005,58(8):1031-1040
This study aimed to establish an optimized, closed loop application of ethylenediaminetetraacetic acid (EDTA) in heavy metal removals from a contaminated soil through integrating EDTA recovery/regeneration and metal precipitation processes in the treatment train. Three divalent heavy metals were investigated, namely, Pb, Cd, and Ni. The extractability of the metals by EDTA followed the decreasing order of CdPb>Ni. The first part of this study was to search for the optimal use of the fresh EDTA in removing these heavy metals from the contaminated soil. The second part of this study was devoted to the recovery/regeneration of the spent EDTA which followed the sequential processes involving (1) complex destabilization by adding ferric ion (Fe(III)) to liberate Pb, Cd, and Ni, (2) precipitation of the liberated Pb, Cd, and Ni in phosphate (PO4(3-)) forms, and (3) precipitation of the excess Fe(III) which eventually produced free EDTA for reuse. The process variables were dosages of Fe(III) and PO4(3-), pH and reaction times. Laborious trial experiments would be needed in searching for the optimum conditions for the above processes. To expedite this exercise, a geochemical equilibrium model, MINTEQA2, was used to find the thermodynamically favorable conditions for recoveries of both EDTA and heavy metals. This was then followed by experimental examination of the process kinetics to observe for the optimal reaction time for each thermodynamically favorable process. This study revealed that 2 h of reaction time each for the complex destabilization reaction and the metal phosphate precipitation reaction was sufficient to achieve equilibrium. With the optimized process condition identified in this study, a total of 95%, 89% and 90% of the extracted Pb, Cd and Ni, respectively, could be precipitated from the spent EDTA solution, with 84% EDTA recovery. The reused EDTA maintained more than 90% of its preceding extraction power in each cycle of reuse.  相似文献   

17.
Abstract

The mass transfer of naphthalene vapor to water droplets in air was studied in the presence of ozone (O3) in the gas phase. A falling droplet reactor with water droplets of diameters 55, 91, and 182 μm was used for the study. O3 reacted with naphthalene at the air-water interface, thereby decreasing the mass transfer resistance and increasing the rate of uptake of naphthalene into the droplet. A Langmuir-Hinshelwood reaction mechanism at the air-water interface satisfactorily described the surface reaction. The first-order surface reaction rate constant, ks, increased with decreasing droplet size. Three organic intermediates were identified in the aqueous phase as a result of ozonation of naphthalene at the surface of the droplet indicating both peroxidic and nonperoxidic routes for ozonation. The presence of an organic carbon surrogate (fulvic acid) increased both the partition constant of naphthalene and the surface reaction rate of O3. The heterogeneous oxidation of naphthalene by O3 on the droplet was 15 times faster than the homogeneous oxidation by O3 in the bulk air phase, whereas it was only 0.08 times the homogeneous gas-phase oxidation by hydroxyl radicals under atmospheric conditions.  相似文献   

18.
综合光催化氧化苯的动力学过程、光辐射场模型和质量守恒定律,采用平板型反应器建立了碳纳米管/二氧化钛/壳聚糖(CNTs/TiO2/CS)催化薄膜光催化氧化气相苯的数学模型;该模型考虑了光强、相对湿度、初始浓度与气体流速对气相苯光降解的影响。结果表明,建立的数学模型与实验结果吻合较好。  相似文献   

19.
Abstract

An improved photocatalytic oxidation (PCO) reactor model was developed to analyze the removal of volatile organic compounds (VOCs) in indoor air. One new parameter, the average total removing factor K t, together with the other two parameters, the number of mass transfer units NTUm and the fractional conversion e, are found to be the main parameters influencing the photooxidation performance of PCO reactors. Three new parameters, the ideal reaction number of mass transfer units, NTUm,ir; the ideal reaction fractional conversion, εir; and the reaction effectiveness, η, also are defined. These concepts are helpful to the structural design and optimization for PCO reactors. The application of the model in designing a plate-type PCO reactor is demonstrated. This study shows that the present model is an effective tool for designing PCO reactors and for evaluating VOC removal performance of available PCO reactors.  相似文献   

20.
A novel process for degradation of toluene in the gas-phase using heterogeneous gas-liquid photocatalytic oxidation has been developed. The degradation of toluene gas by photo-Fenton reaction in the liquid-phase has experimentally examined. The photo-Fenton reaction in the liquid-phase could improve the overall toluene absorption rate by increasing the driving force for mass transfer and as a result enhance the removal of toluene in the exhaust gas. The toluene concentrations in the inlet gas were varied in the range from 0.0968 to 8.69gm(-3) with initial hydrogen peroxide concentration of 400mgl(-1) and Fe dose of 5.0mgl(-1). It was found that toluene in the inlet gas was almost completely dissolved into water and degraded in the liquid-phase for the inlet toluene gas concentration of less than 0.42gm(-3). The dynamic process of toluene gas degradation by the photo-Fenton reaction providing information for reaction kinetics and mass transfer rate was examined. Toluene removal kinetic analysis indicated that photo-Fenton degradation was significantly affected by H(2)O(2) concentration. The experimental results were satisfactorily described by the predictions simulated using the simplified tanks-in-series model combined with toluene removal kinetic analysis. The present results showed that the proposed chemical absorption process using the photo-Fenton heterogeneous gas-liquid photocatalytic oxidation is very effective for degradation of volatile organic gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号