首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Cyanide has been detected in effluent of some publicly owned treatment works (POTWs) at levels exceeding influent concentration. Thiocyanate (SCN-) is a cyanide-related compound encountered in most POTW influents and may be decomposed to free cyanide (CN-) under some circumstances. Effects of SCN- on the formation of cyanide during chlorination and UV disinfection were studied through a laboratory study with synthetic solutions and POTW secondary effluent. Results indicated that CN- was detected in SCN- solutions after chlorination in which the chlorine dose or reaction time was not sufficient to destroy SCN-completely, thus ensuring no residual chlorine to destroy any CN-produced. It was also found that SCN can be broken down to yield cyanide by UV irradiation. In addition, SCN- was observed to cause significant positive error in the conventional total cyanide analysis technique involving acidic distillation and colorimetric measurement when nitrate was present in the sample.  相似文献   

2.
This paper presents results from an intensive monitoring program implemented at six full-scale publicly owned treatment works (POTWs) to investigate the fate and formation of cyanide in wastewater treatment processes, with a focus on chlorination and dechlorination processes. A review of historical monitoring data for cyanide species in these POTWs was also conducted. This POTW monitoring program provided a database for the investigation of cyanide formation in wastewater secondary treatment. Data from participating POTWs showed evidence of cyanide formation in this 1-year monitoring effort, although the cyanide formation pattern varied significantly from one plant to another and among seasons. Generally, the chlorination of thiocyanate (SCN-) seems to be the most important mechanism for the formation of cyanide in wastewater treatment processes, especially in chlorination and dechlorination. This hypothesis is supported by the findings of a related laboratory study of mechanisms of cyanide formation in POTWs. It is recommended that POTWs monitor SCN in influent and secondary effluent to identify its presence and adjust chlorine dose appropriately.  相似文献   

3.
Cyanide has been detected in the effluents of some publicly owned treatment works (POTWs) at levels exceeding the influent concentration. The presence of nitrite ion (NO2-) as a common constituent in domestic wastewater effluents may play an important role in the formation of cyanide through reaction with certain kinds of organic compounds, especially aromatic compounds. Laboratory studies with seven organic compounds (aniline. p-toluidine, phenol, 1,2,4-trihydroxybenzene, L-serine, glycine, and benzoic acid) revealed that cyanide can be formed by reaction of nitrite with some of these compounds. The most substantial free cyanide (HCN. CN-) production observed at 25 degrees C was 0.15 mg/L from reaction of 0.01 mM 1.2.4-trihydroxybenze with 5 mg/L nitrite for 72 hours. Substantial free cyanide formation was also observed at pH 2-4 in experiments with POTW effluents when reactive organics and nitrite were both added to wastewater. Formation of cyanide through nitrosation was strongly pH dependent, being most significant at low pH (2 to 4) and negligible at neutral-to-high pH. This result points to nitrous acid (HNO2) as being more reactive than the dissociated NO2- ion. The reaction of these nitrite species with organics also occurs in conventional analyses for total cyanide which involve distillation under strongly acidic conditions. Sufficient sample pretreatment with sulfamic acid at the time of sampling, not at the time of analysis. is highly recommended to prevent biasing analytical measurement of total cyanide in POTW effluents.  相似文献   

4.
Yang X  Shen Q  Guo W  Peng J  Liang Y 《Chemosphere》2012,88(1):25-32
The formation of trichloronitromethane (TCNM) and dichloroacetonitrile (DCAN) was investigated during chlorination and chloramination of 31 organic nitrogen (org-N) compounds, including amino acids, amines, dipeptides, purines, pyrimidones and pyrroles. Tryptophan and alanine generated the greatest amount of TCNM during chlorination process and asparagine and tyrosine yielded the highest amount of TCNM during chloramination process. Tryptophan, tyrosine, asparagine, and alanine produced more DCAN than other org-N compounds regardless of chlorination or chloramination. TCNM and DCAN formation was higher by chlorination than by chloramination. NH2Cl:org-N molar ratios, reaction time, and pH affected N-DBPs formation in varying degrees. TCNM and DCAN yields were usually high during chloramination of tyrosine, asparagine, and methylpyrrole under the following reaction conditions: NH2Cl:org-N molar ratios greater than 10, reaction time for 1 d, and at pH 7.2. NH2Cl as a major nitrogen origin in TCNM and DCAN was confirmed via labeled 15N-monochloramine during chloramination of tyrosine, asparagine and methylpyrrole. In contrast, the majority of nitrogen in TCNM originated from glycine, and that in DCAN originated from pyrrole. Based on the intermediates identified by gas chromatography/mass spectrometry (GC/MS), a pathway scheme was proposed for TCNM and DCAN formation.  相似文献   

5.
回用生活污水的电化学消毒试验研究   总被引:2,自引:0,他引:2  
对北京某中水站回用于杂用水的生活污水进行电化学消毒试验。试验结果表明 ,生活污水经生物接触氧化、活性炭吸附后 ,流经电化学消毒器停留 2 0s、耗电 0 .30kWh/m3 、消毒器出水放置 1h后 ,总大肠菌群数 <3个 /L ,满足生活杂用水的卫生学指标。当余氯浓度及接触时间相等的条件下 ,电化学消毒法的杀菌效果好于加氯消毒。E .coli细胞经电化学消毒和加氯消毒处理后 ,扫描电镜观察的结果表明 :2种方法作用后的细胞在形态上的变化是不相同的 ,说明电化学消毒的消毒机制不仅仅取决于电解产氯的作用 ,还有其他的杀菌作用  相似文献   

6.
A study on chlorination of raw greywater with hypochlorite is reported in this paper. Samples were chlorinated in a variety of conditions, and residual chlorine (Cl2) was measured spectrophotometrically. For each sample, the chlorination curve (chlorine residuals versus chlorine dose) was obtained. Curves showed the typical hump-and-dip profile attributable to the formation and destruction of chloramines. It was observed that, after reactions with strong reductants and chloramines-forming compounds, the remaining organic matter exerted a certain demand of chlorine. The evolution of chlorination curves with addition of ammonia and dodecylbencene sulfonate sodium salt and with dilution of the greywater sample were studied. In addition, chlorination curves at several contact times have been obtained, resulting in slower chlorine decay in the hump zone than in the dip zone. In addition, the decay of coliforms in chlorinated samples was also investigated. It was found that, for a chlorination dosage corresponding to the maximum of the hump zone (average 8.9 mg Cl2/ L), samples were negative in coliforms after 10 to 30 minutes of contact time. After-growth was not observed within 3 days after chlorination. Implications in chlorination treatments of raw greywater can be derived from these results.  相似文献   

7.
A cellulose bleaching effluent (E1) was degraded in batch conditions by photocatalysis using TiO2 and ZnO supported on glass Raschig rings. The effluent was completely decolourised and the total phenol content was reduced by 85% after 120 min treatment with both catalysts. Partial mineralization of the organic matter was confirmed by total organic carbon (TOC) reduction, approximately 50%. The residual organic matter shows a low acute toxicity as compared to the initial values and AOX values are strongly reduced after the photocatalytic oxidation. Molecular mass distribution showed that high molecular mass compounds were almost completely degraded.  相似文献   

8.
This paper reports on biological sludge acclimatisation and the results concerning the removal of free cyanide, thiocyanate and metallocyanides (copper, iron and zinc) from a synthetic gold milling effluent. The experiments were carried out in a continuous bench-scale bioreactor, and the experimental set-up consisted of two identical units, one of which served as control. The acclimatisation of the biomass was based on a stepwise procedure, in which the proportion of synthetic solution in the influent was gradually increased. The reactors were fed with a mixture of synthetic effluent and sewage, and the treatment efficiency was evaluated through the monitoring of the following parameters: chemical oxygen demand (COD), free cyanide, thiocyanate, copper, iron and zinc concentrations. A well adapted microbial consortium was obtained at the end of the acclimatisation period, which was able to remove more than 95% of free cyanide, thiocyanate, copper and zinc, originally found in the influent. These removal efficiencies were obtained when the reactor was operated with a hydraulic retention time (HRT) of about 8 h. The performance results of experiments carried out with lower HRT (5 h) and higher dissolved oxygen (DO) concentration (6.5 mg litre(-1)) are also presented and discussed in this study.  相似文献   

9.
The aim of this work was to develop a simple and fast analytical method for the determination of a wide range of organic compounds (volatile and semivolatile compounds) in municipal wastewater. The headspace-solid-phase microextraction (HS-SPME) and gas chromatography (with mass spectroscopy) was used for determination of the organic compounds. In this study, 39 organic compounds were determined, including 3 sulfur compounds, 28 substituted benzenes, and 8 substituted phenols. The extraction parameters, such as types of SPME fiber, extraction temperature, extraction time, desorption time, salt effect, and magnetic stirring, were investigated. The method had very good repeatability, because the relative standard deviations ranged from 0.5 to 12%. The detection limit of each compound was at or below the microgram-per-liter level. This method was applied for determination of the organic compounds in raw wastewater, primary effluent, secondary effluent, and chlorinated secondary effluent samples from the Chania Municipal Wastewater Treatment Plant (Crete, Greece).  相似文献   

10.

Purpose  

Dechlorination with tetravalent sulfur is widely used in wastewater treatment processes after chlorination. Dechlorination can remove certain genotoxic disinfection by-products (DBPs). However, the reactions occurring during dechlorination of chlorinated secondary effluent and their genotoxic chemicals are still very complex, and the related genotoxicity changes remain unknown. Therefore, the effects of dechlorination on genotoxicity in secondary effluent and its fractions and typical genotoxic chemical after chlorination were evaluated.  相似文献   

11.
To assess the occurrence and fate of nitrosodimethylamine (NDMA) and its precursors in wastewater treatment plants, samples from wastewater treatment plants and industrial sources were analyzed for NDMA, total NDMA precursors, and dimethylamine (DMA). The median concentration of NDMA in untreated wastewater was approximately 80 ng/L, with maximum concentrations up to 790 ng/L presumably occuring because of sources unrelated to domestic wastewater. Concentrations of DMA in untreated wastewater ranged from approximately 50 to 120 microg/L and accounted for a majority of the NDMA precursors. The removal of NDMA during secondary biological treatment exhibited considerable variability, with overall removal ranging from 0 to 75%. In contrast, removal of NDMA precursors and DMA generally exceeded 70%. The median concentration of NDMA in secondary effluent before disinfection was 46 ng/L. Although DMA was removed during secondary treatment, other NDMA precursors in wastewater effluent will result in formation of additional NDMA upon disinfection with chloramines.  相似文献   

12.
Chen HW  Chen CY  Wang GS 《Chemosphere》2011,85(4):591-597
The presence of various organic contaminants in water sources is of concern due to their direct threats to human health and potential to react with disinfectants to form carcinogenic byproducts including trihalomethanes, haloacetic acids and nitrosamines in finished water. This study applied both medium-pressure and low-pressure ultraviolet light coupled with hydrogen peroxide (UV/H2O2) to evaluate its efficacy for degradation of selected nitrogenous organic compounds and corresponding disinfection byproduct (DBP) formation. Six organic compounds were chosen as target precursors based on their nitrogen contents and molecular structures. The results showed that higher oxidation capacity resulted in better reduction of organic matters and DBP formation potentials (DBPFPs). However, insufficient contact time and oxidant doses could lead to a rise of DBPFPs in the early stages of UV/H2O2 reactions. A greater percentage removal was achieved for organic carbon than organic nitrogen after UV/H2O2 treatment, especially for compounds with complicated structure such as diltiazem. During the UV/H2O2 treatment, the intermediate products include tertiary amine, dimethyl amine (DMA) or DMA-like structures, which are N-nitrosodimethylamine (NDMA) precursors after chlorination or chloramination. Furthermore, it was observed that using dissolved organic nitrogen and DMA to predict NDMAFP could lead to biased conclusions because of the complex nature of nitrogenous matters in aqueous environments.  相似文献   

13.
We investigated the adsorption and decomposition of sulfamethazine (SMT), which is used as a synthetic antibacterial agent and discharged into environmental water, using high-silica Y-type zeolite (HSZ-385), titanium dioxide (TiO2), and TiO2–zeolite composites. By using ultrapure water and secondary effluent as solvents, we prepared SMT solutions (10 μg/L and 10 mg/L) and used them for adsorption and photocatalytic decomposition experiments. When HSZ-385 was used as an adsorbent, rapid adsorption of SMT in the secondary effluent was confirmed, and the adsorption reached equilibrium within 10 min. The photocatalytic decomposition rate using TiO2 in the secondary effluent was lower than that in ultrapure water, and we clarified the inhibitory effect of ions and organic matter contained in the secondary effluent on the reaction. We synthesized TiO2–zeolite composites and applied them to the removal of SMT. During the treatment of 10 μg/L SMT in the secondary effluent using the composites, 76 % and more than 99 % of the SMT were decomposed within 2 and 4 h by photocatalysis. The SMT was selectively adsorbed onto high-silica Y-type zeolite in the composites. Resultantly, the inhibitory effect of the coexisting materials was reduced, and the composites could remove SMT more effectively compared with TiO2 alone in the secondary effluent.  相似文献   

14.
Kong XJ  Li D  Cao LQ  Zhang XM  Zhao Y  Lv Y  Zhang J 《Chemosphere》2008,72(1):59-66
In order to evaluate the municipal sewage treatment systems used at Harbin municipal sewage treatment plant for their pollutant removal efficiency, raw sewage and effluent samples at different treatment stages from the sewage treatment systems were taken, priority pollutants (PPs) were identified and quantified using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-atomic emission spectrograph (ICP-AES). The test results indicated that there were one hundred and fifty species of organic pollutants identified in the raw sewage sample, and only ten species of PPs in all the sewage samples. The levels of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), di-n-octyl phthalate (DnOP) in the sewage samples were 0.779-0.111 microg l(-1), 1.977-0.022 microg l(-1), 6.411-2.194 microg l(-1) and 7.152-2.953microg l(-1), respectively, and most of these phthalate esters (PAEs) were removed through anaerobic/aerobic (A/O) process; The levels of alachlor, acetochlor, atrazine were 0.074-0.021 microg l(-1), 0.160-0.096 microg l(-1) and 0.238-0.184 microg l(-1), respectively, and the total removal efficiency of atrazine was poorest through the sewage treatment systems. The levels of Cu, Cr, Se, Hg, Ni and Zn were 0.0030-0.2327 mg l(-1). It is therefore concluded from these results that the sewage treatment systems were efficient in removing most of the organic and inorganic compounds in this study, and so, the discharged effluent could cause little of the secondary pollution of the aquatic environment.  相似文献   

15.
Keppler F  Biester H 《Chemosphere》2003,52(2):451-453
It is a little known fact that many chlorinated organic compounds occur naturally and that some are also indispensable to life on earth. Here, we show that chlorination of organic compounds during humification processes in peat is widespread in nature. Globally this process has led to the accumulation of approximately 280-1000 million tons of organically bound chlorine in peatlands during the postglacial period.  相似文献   

16.
Some halogenated organic compounds, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polybrominated diphenyl ethers (PBDEs), have been suggested to have natural sources but separating these compounds from their commercially synthesized counterparts is difficult. Molecular-level 14C analysis may be beneficial since most synthetic compounds are manufactured from petrochemicals (14C-free) and natural compounds should have "modern" or "contemporary" 14C levels. As a baseline study, we measured, for the first time, the 14C abundance in commercial PCB and PBDE mixtures, a number of organochlorine pesticides, as well as one natural product 2-(3',5'-dibromo-2'-methoxyphenoxy)-3,5-dibromoanisole. The latter compound was isolated from a marine sponge and is similar in structure to a PBDE. All of the synthetic compounds were 14C-free except for the pesticide toxaphene. which had a modern 14C abundance, as did the brominated natural compound. The result for toxaphene was not surprising since it was commercially synthesized by the chlorination of camphene derived from pine trees. These results suggest that measuring the 14C content of halogenated organic compounds may be quite useful in establishing whether organic compounds encountered in the environment have natural or synthetic origins (or both) provided that any synthetic counterparts derive from petrochemical feedstock.  相似文献   

17.
The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg?L?1, respectively. Arsenic, copper, iron and free cyanide (CN?) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.  相似文献   

18.
Dechlorinating agents and pH adjustment are often used to preserve wastewater samples for cyanide analysis. The effects of four approved preservation protocols on the results of the total cyanide analysis of effluents from four water reclamation plants were examined. The results differed widely, and a clear pattern emerged. Immediate analysis without pH adjustment generally gave total cyanide concentrations below the reporting limit of 5 microg/L, irrespective of the dechlorinating agents used. When the pH was adjusted to > or =12, a slight increase in the measured total cyanide concentration was observed when thiosulfate was used to dechlorinate the samples, and a significant increase (>10 microg/L) was observed when arsenite was used as the dechlorinating agent. These results provide evidence that approved preservation protocols may give rise to cyanide formation in chlorinated wastewater effluent matrices.  相似文献   

19.
The effect of influent nitrogen composition on organic nitrogen production in a sequencing batch reactor (SBR) activated sludge process was investigated. A laboratory-scale SBR was fed with three different type synthetic wastewaters with varying nitrogen compositions (phase I = nitriloacetic acid + ammonium [NH4-N], phase II = NH(4-)N, and phase III = amino acid mixture + NH(4-)N) was operated. The effluent contained approximately 1 to 2 mg N/L organic nitrogen, even though there was no organic nitrogen in influent. The effluent organic nitrogen increased to approximately 4 mg N/L when the influent composition was changed and then stabilized at <2 mg N/L. The maximum nitrifier growth rate constants (microN) were calculated as 0.91+/-0.10 to 1.14+/-0.08 day-1, 0.82 +/-0.13 day-1, and 0.89+/-0.08 day-1 at 20 degrees C for the three different influent compositions. The effluent colloidal organic nitrogen (CON) was negligible, suggesting that the effluent CON found in full-scale plants may be the result of influent-derived suspended matter.  相似文献   

20.
The fate of dissolved organic matter (DOM) during subsurface wetland treatment of wastewater effluent in a hot, semi-arid environment was examined. The study objectives were to (1) discern changes in the character of dissolved organics as consequence of wetland treatment (2) establish the nature of wetland-derived organic matter, and (3) investigate the impact of wetland treatment on the formation potential of trihalomethanes (THMs). Subsurface wetland treatment produced little change in DOM polarity (hydrophobic-hydrophilic) distribution. Biodegradation of labile effluent organic matter (EfOM) and internal loading of wetland-derived natural organic matter (NOM) together produced only minor changes in the distribution of carbon moieties in hydrophobic acid (HPO-A) and transphilic acid (TPI-A) isolates of wetland effluent. Aliphatic carbon decreased as a percentage of total carbon during wetland treatment. The ratio of atomic C:N in wetland-derived NOM suggests that its character is determined by microbial activity. Formation of THMs upon chlorination of HPO-A and TPI-A isolates increased as a consequence of wetland treatment. Wetland-derived NOM was more reactive in forming THMs and less biodegradable than EfOM. For both HPO-A and TPI-A fractions, relationships between biodegradability and THM formation potential were similar among EfOM and NOM isolates; the less biodegradable isolates exhibited greater THM formation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号