首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
非平衡等离子体废水处理技术是以高活性粒子氧化为主,协同紫外光降解和液电空穴效应等于一体的高级氧化技术,极具发展前景。本文简述其技术原理,对比了不同结构反应器的优缺点,评述了等离子体与其他高级氧化技术协同作用在废水处理方面的应用,提出了其有待解决的问题及发展方向,以期为研发与应用起到借鉴作用。  相似文献   

2.
一种新兴的高级氧化技术--超临界水氧化法   总被引:3,自引:0,他引:3  
超临界水氧化法在处理废水方面具有独特的优势.从超临界水的性质,超临界水氧化法原理、工艺、应用和优越性等方面阐述了超临界水氧化法作为一种新兴的高级氧化技术具有广阔的应用前景,并且提出了解决现存问题的建议.  相似文献   

3.
臭氧高级氧化技术在废水处理中的应用   总被引:5,自引:0,他引:5  
李静  刘国荣 《污染防治技术》2007,20(6):55-57,116
综述了近年来迅速发展的臭氧高级氧化技术,包括臭氧氧化技术、臭氧/过氧化氢、臭氧/紫外辐射、臭氧与活性炭协同作用等技术,介绍了各种高级氧化技术的基本原理及在废水处理中的应用,并对其特点进行了评述。  相似文献   

4.
合理高效地处理含酚废水是工业废水处理的主要任务之一。重点介绍了高级氧化技术 ,如超声波氧化、超临界水氧化、湿式氧化和光催化氧化等在含酚废水处理中的研究近况和应用前景 ,探讨了各种技术的应用和发展趋势  相似文献   

5.
高级氧化技术在含酚废水处理中的应用   总被引:1,自引:0,他引:1  
合理高效地处理含酚废水是工业废水处理的主要任务之一。重点介绍了高级氧化技术,如超声波氧化、超临界水氧化、湿式氧化和光催化氧化等在含酚废水处理中的研究近况和应用前景,探讨了各种技术的应用和发展趋势。  相似文献   

6.
本文对近年来超临界水氧化法 (SCWO)在含酚废水处理方面的发展进行了综述。主要介绍了含酚废水催化超临界水氧化技术的进展 ,讨论了催化剂、影响因素、转化率、机理及动力学等方面的内容  相似文献   

7.
一种新兴的高级氧化技术——超临界水氧化法   总被引:6,自引:0,他引:6  
超临界水氧化法在处理废水方面具有独特的优势。从超临界水的性质,超临界水氧化法原理、工艺、应用和优越性等方面阐述了超临界水氧化法作为一种新兴的高级氧化技术具有广阔的应用前景,并且提出了解决现存问题的建议。  相似文献   

8.
光催化臭氧氧化法在废水处理中的研究进展   总被引:1,自引:0,他引:1  
光催化臭氧氧化法作为一种有效的废水处理技术,对难降解的有机废水,具有良好的降解功效。文中分析了UV/O3/Fe2+、UV/O3/Fe3+和UV/O3/H2O2体系的反应机理,介绍了光催化臭氧氧化法在废水处理中的应用情况,指出了光催化臭氧氧化法存在的问题和展望。  相似文献   

9.
污泥脱水是污泥处理中的一个重要环节,可以减少污泥容量,削减污泥运输和最终处置费用。基于目前污泥处理中污泥脱水的现状,综述了几种高级氧化法对污泥深度脱水的研究进展,包括臭氧氧化法,Fenton、类Fenton氧化法和过硫酸盐氧化法;并展望了污泥脱水技术的发展与应用前景,以期为高级氧化技术在污泥深度脱水理论研究及工程应用提供技术参考。  相似文献   

10.
本文对近年来超临界水氧化法(SCWO)在含酚废水处理方面的发展进行了综述,主要介绍了含酚废水催化超临界水氧化技术的进展,讨论了催化剂,影响因素,转化率,机理及动力学等方面的内容。  相似文献   

11.
Degradation of two model insecticides, diazinon and malathion, and their degradation products 2-isopropyl-6-methyl-4-pyrimidinol--IMP (diazinon hydrolysis product) and malaoxon (malathion oxidation product) was compared and studied in the environment. The pesticides and their metabolites were extracted from samples (water, soil, chicory) with ethyl acetate and subsequently the extracts were analyzed by GC/FID. It was shown that hydrolysis is the major process in the degradation of these pesticides in water. In fact, 95% of diazinon was degraded, and only 10% of malathion was oxidised. In soil 30% of diazinon exposed to the sunlight was decomposed by photolysis, whereas in soil left in the darkness no degradation products were observed. In soil left under environmental conditions, 90% of diazinon was degraded and 40% from its initial concentration was transformed into IMP. The concentrations of the pesticides after 21 days on chicory were under maximal allowable concentration, which is 0.5 ppm for malathion and for diazinon. The concentration of malaoxon was more than twice as high as the allowable value, which is for the sum of malathion and malaoxon 3 ppm.  相似文献   

12.
Photo-Fenton/ozone (PhFO) and TiO2-photocatalysis/ozone (PhCO) coupled systems are used as advanced oxidation processes for the degradation of the following biorecalcitrant pesticides: alachlor, atrazine, chlorfenvinfos, diuron, isoproturon and pentachlorophenol. These organic compounds are considered Priority Hazardous Substances by the Water Framework Directive of the European Commission. The degradation process of the different pesticides, that occurs through oxidation of the organic molecules by means of their reaction with generated OH radical, follows a first and zero-order kinetics, when PhFO and PhCO are applied, respectively. These two Advanced Oxidation Processes, together with the traditional ozone+UV, have been used to investigate TOC reduction of the different pesticide aqueous solutions. The best results of pesticide mineralization are obtained when PhFO is applied; with the use of this advanced oxidation process the aqueous pesticide solutions become detoxyfied except in the case of atrazine and alachlor aqueous solutions for which no detoxification is achieved at the experimental conditions used in the work, at least after 2 and 3 h of treatment, respectively.  相似文献   

13.
The data presented in this paper emphasize that the behavior and fate of pesticides in the environment is influenced by humic substances. Various methods most frequently used for the characterization of humic substances are discussed. Both humic acid and fulvic acid can solubilize in water certain organic compounds and are important carriers of some pesticides in soil. Humic substances have the potential for promoting the nonbiological degradation of many pesticides. Several methods of bleaching humus color from drinking water, including chlorination, ozonation, and UV-radiation, are described. Finally, the photochemical stability to UV-radiation of certain pesticides in aqueous fulvic acid solution is discussed.  相似文献   

14.
Abstract

The data presented in this paper emphasize that the behavior and fate of pesticides in the environment is influenced by humic substances. Various methods most frequently used for the characterization of humic substances are discussed. Both humic acid and fulvic acid can solubilize in water certain organic compounds and are important carriers of some pesticides in soil. Humic substances have the potential for promoting the nonbiological degradation of many pesticides. Several methods of bleaching humus color from drinking water, including chlorination, ozonation, and UV‐radiation, are described. Finally, the photochemical stability to UV‐radiation of certain pesticides in aqueous fulvic acid solution is discussed.  相似文献   

15.
Developing advanced treatment technologies for improving the removal of micropollutants in water/wastewater is important. A suitable treatment is more likely to be used as the polishing step in the treatment scheme. Advanced oxidation technologies (AOTs) are relevant for removing micropollutants. The ability of direct UV photolysis and selected AOTs to degrade pharmaceuticals, endocrine-disrupting compound and herbicide has been studied and compared. The tested methods resulted in the degradation of the studied micropollutants; however, none of the methods was preferred for the removal of all tested compounds. The UV-active processes have strong potential for removal of the studied micropollutants. The utilisation of a moderate hydrogen peroxide admixture resulted in a more reliable treatment.  相似文献   

16.
Heterogeneous photocatalysis of pesticides is an effective process for removing pesticides from pure water. With a view to treating real agricultural effluents, this paper deals with the degradation of the chlortoluron and cyproconazole pesticides in pure water and the treatment of commercial solutions by photocatalysis on TiO2 coated media. The process was effective in degrading and mineralizing the pesticides. The changes of the fate of heteroatoms showed that during irradiation of the chlortoluron and cyproconazole, NH4+ and NO3(-) ions were produced. A release of chloride ions was observed from the beginning of the irradiation and stoichiometry was achieved. The photodegradation of chlortoluton and cyproconazole in commercial solutions was studied. For the degradation of chlortoluton in a commercial solution, the mineralization was completely achieved whereas in the case of the commercial cyproconazole solution, the degradation kinetic was lower. These results highlight the fact that the chemical nature of the additives in the commercial pesticide solutions does significantly affect the degradation yield of the target compound by photocatalysis.  相似文献   

17.
Zhang Y  Hou Y  Chen F  Xiao Z  Zhang J  Hu X 《Chemosphere》2011,82(8):1109-1115
In this paper, elimination of two types of organophosphorus pesticides (OPPs), chlorpyrifos and diazinon spiked in aqueous solution by ultrasonic irradiation was investigated. Results showed that chlorpyrifos and diazinon could be effectively and rapidly degraded by ultrasonic irradiation, and the degradation of both pesticides was strongly influenced by ultrasonic power, temperature and pH value. Furthermore, two and seven products for the degradation of chlorpyrifos and diazinon formed during ultrasonic irradiation have been identified by gas chromatography-mass spectrometry, respectively. The hydrolysis, oxidation, hydroxylation, dehydration and decarboxylation were deduced to contribute to the degradation reaction and the degradation pathway for each pesticide under ultrasonic irradiation was proposed. Finally, the toxicity evaluation indicated that the toxicity decreased for diazinon solution after ultrasonic irradiation, but it increased for chlorpyrifos solution. The detoxification of OPPs by ultrasonic irradiation was discriminative.  相似文献   

18.
In order to evaluate the deleterious effects of exposure to pesticides on a target population, a comprehensive study on their degradation in the various segments of ecosystem under varying environmental conditions is needed. In view of this, a study has been carried out on the metabolic pathways of thiram, a dithiocarbamate fungicide, in a variety of matrices namely water and soil under controlled conditions and plants in field conditions. The identification of degradation products was carried out in samples collected at various time points using LC-MS. The degradation products identified can be rationalized as originating by a variety of processes like hydrolysis, oxidation, N-dealkylation and cyclization. As a result of these processes the presence of some metabolites like dimethyl dithiocarbamate, bis(dimethyl carbamoyl) disulphide, bis(dimethyl dithiocarbamoyl) trisulphide and N-methyl-amino-dithiocarbamoyl sulphide was observed in all the cases. However, some different metabolites were observed with the change in the matrix or its characteristics such as cyclised products 2(N, N-dimethyl amino)thiazoline carboxylic acid and 2-thioxo-4-thiazolidine were observed only in plants. The investigations reflect that degradation initiates with hydrolysis, subsequently oxidation/dealkylation, followed by different types of reactions. The pathways seem to be complex and dependent on the matrices. Dimethyl dithiocarbamate and oxon metabolites, which are more toxic than parent compound, seem to persist for a longer time. Results indicate persistence vis-a-vis toxicity of pesticide and its metabolites and also provide a data bank of metabolites for forensic and epidemiological investigations.  相似文献   

19.
Osano O  Nzyuko D  Tole M  Admiraal W 《Ambio》2003,32(6):424-427
Alachlor, metolachlor and their respective environmentally stable aniline degradation products, 2,6-diethylaniline and 2-ethyl-6-methylaniline were analyzed in water and sediment samples from 9 sites along River Nzoia, Kenya using gas chromatography. The degradation products were detected in > 90% of the sediment and water samples, while the parent compounds occurred in < 14% of the water samples. Much higher concentrations of the pesticides and their degradation products occurred in the sediment than in the water (1.4 up to 10 800-fold), indicating an accumulation of the compounds in the sediment. The constant occurrence of the degradation products in the sediment during the study period infers a persistence of these compounds. It is hypothesized that the prevailing tropical climatic conditions favor a quick breakdown of the pesticides to their environmentally stable degradation products, thereby making the latter more important pollutants than their parent products in the study area.  相似文献   

20.
A potential method for cleaning water from point-source pollution by organic compounds is using biological reactors. In this study, four reactors were tested for their ability to retain and degrade pesticides. The pesticides tested were the insecticide chlorpyrifos, the fungicide metalaxyl and the herbicide imazamox. The reactors were filled with differing mixtures of vine-branch, citrus peel, urban waste and public green compost. The reactor volume was 188 l. Forced circulation of the contaminated solution was programmed to decontaminate the solution. Both retention and degradation of the compounds by the reactors was studied. Chlorpyrifos was the best retained, due to its physico-chemical characteristics, while only one substrate effectively retained metalaxyl and imazamox (citrus peel+urban waste compost). Degradation of the pesticides in the reactors was faster than published values for degradation in soil. The half-life of all pesticides in the reactors was less than 14 days, compared to literature values of 60-70 days in soil. The combined retention and fast degradation make the biofilter a feasible technique to reduce spill-related and point environmental contamination by pesticides. The technique is most effective against persistent pesticides, while for mobile pesticides, the efficiency can be improved with several passages of the contaminated solution through biofilters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号