首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以腐植酸(HA)溶液为吸附剂、从受多环芳烃污染的土壤中分离出来的降解菌制成为生物修复剂,以多环芳烃(PAHs)萘、菲、芘、荧蒽、苯并蒽、苯并芘为土壤污染物,对PAHs污染土壤进行修复实验。目的是筛选与分离吸附于HA的PAHs降解菌,研究HA与降解菌的协同效应对PAHs的降解效率的影响。用经过HA吸附的PAHs富集分离培养出1株高效降解菌株,命名为Tzyx3,鉴定其为解脂耶氏酵母菌(Yarrowia lipolytica)。15 d后,土壤中萘、菲、芘、荧蒽、苯并蒽、苯并芘的降解率分别为90.7%、91.0%、74.7%、86.9%、84.7%和74.7%,表明Tzyx3和HA在PAHs污染土壤中存在协作关系,Tzyx3能够直接利用HA对土壤中的多环芳烃进行降解。  相似文献   

2.
利用低温等离子体(NTP)净化车用柴油机尾气中的颗粒相多环芳烃(PAHs),基于电晕放电的原理,设计了NTP发生装置。使用色谱质谱联用仪分析经过NTP净化前后柴油机尾气中颗粒相多环芳烃的含量,观察NTP对颗粒相多环芳烃的净化效果。结果表明,颗粒相小分子量PAHs除菲、蒽外,其他4种多环芳烃的含量显著增加,其中萘、苊变化率达1130.4%和758.57%;大分子量PAHs除苯并(ghi)芘外,多环芳烃的含量降低达80%以上;NTP对柴油机尾气中颗粒相多环芳烃含量及毒性当量的净化率分别达58.4%和82.8%。  相似文献   

3.
研究了某电子垃圾拆解园周边151个农田土壤样品中16种多环芳烃(PAHs)的污染特征和环境风险。结果表明,125个表层土壤样品中PAHs总质量浓度在149.0~2.0×104μg/kg,均值为1 805.5μg/kg,随着剖面土壤深度增加,PAHs含量总体呈递减趋势。通过来源解析,电子拆解园周围土壤中PAHs污染主要由废弃的电子电器元件的粗放燃烧和汽车尾气排放共同引起。土壤风险评估表明,7种类二噁英毒性PAHs的毒性当量(TEQPAH)在6.000×10-5~0.689pg TEQ/g,平均值为0.015pg TEQ/g;苯并(a)芘、二苯并(a,h)蒽、苯并(a)蒽、苯并(b)荧蒽、茚并(1,2,3-cd)芘致癌风险率超出百万分之一的样本比例分别为20.53%、6.62%、1.99%、2.65%、2.65%,其中采样点1、68两个点位表层土壤的苯并(b)荧蒽致癌风险率超过了万分之一。  相似文献   

4.
模拟平煤集团矸石电厂以及焦煤集团演马电厂粉煤灰井下填充过程,设计了静态浸泡和动态淋溶实验,并以固相萃取-气相色谱/质谱联用方法,测定了溶出液中的16种多环芳烃含量.实验结果表明:溶出液中主要的PAHs物质是萘、苊、芴、菲、蒽,均为4环以下的多环芳烃类物质,其含量较低,其中菲和蒽的总含量较高,说明在粉煤灰井下填充过程中,多环芳烃类污染物能够从粉煤灰中迁移至水体,并对地下水环境造成一定的影响.  相似文献   

5.
我国环境介质中多环芳烃的分布及其生态风险   总被引:10,自引:1,他引:10  
持久性有机污染物多环芳烃(PAHs)在我国环境介质中广泛分布,美国EPA规定的16种.优先控制多环芳烃大多在我国大气、水体、沉积物、土壤和生物体内检出.总结了我国环境介质中PAHs污染水平及特点,分析了其存在的环境风险.我国大气中PAHs污染较重,尤其是北方.水体已普遍受PAHs污染,其中部分水体污染严重;沉积物多环芳烃污染大多处于低生态风险水平,但沉积记录研究表明有越来越严重的趋势.我国土壤和生物体PAHs含量较低,污染生态风险较小.部分区域蔬菜中PAHs含量较高,存在不可忽视的生态风险.  相似文献   

6.
为探究吉林省电厂周边农田土壤中多环芳烃(PAHs)残留情况,选取了4座燃煤电厂,对其周边农田土壤中3种低环PAHs(萘(NAP)、菲(PHE)、蒽(ANT))和苯并(a)芘(BaP)进行了含量特征、污染水平、潜在风险及来源分析。结果表明:NAP、PHE、ANT和BaP均有检出,3种低环PAHs中ANT占比最高,与国内其他典型污染源周边农田相比,处于较低水平;综合质量基准法和质量标准法两种生态风险评价方法可知,电厂周边农田土壤生态风险水平较低;通过健康风险评价可知,BaP的致癌风险处于可接受范围,NAP、PHE和ANT不存在非致癌风险;电厂周边的农田土壤中PAHs主要来源于化石燃料、木材以及高分子化合物的燃烧。  相似文献   

7.
化学氧化法治理焦化厂PAHs污染土壤   总被引:1,自引:0,他引:1  
针对焦化类工业场地多环芳烃(PAHs)污染土壤治理问题,选取北京某焦化厂PAHs污染土壤,对其进行化学氧化修复治理的室内模拟研究,实验采用高锰酸钾、Fenton试剂、双氧水和过硫酸钠4种氧化剂,测试了氧化剂的土壤氧化剂需求量(SOD),分析了4种氧化剂对15种PAHs的氧化效果以及反应过程中土壤总PAHs浓度和土壤有机质含量(SOM)随反应时间的变化。结果表明,北京某焦化厂PAHs污染土壤过硫酸钠SOD低于高锰酸钾SOD;Fenton试剂和双氧水对PAHs的总去除率分别为59.53%和62.72%,且对三环PAHs的去除率较好,高锰酸钾对PAHs的总去除率为59.24%,对蒽和苯并(a)芘的去除效果较好,活化过硫酸钠对PAHs的总去除率为68.87%;土壤有机质可通过对PAHs的吸附影响氧化剂的处理效果。  相似文献   

8.
为分析峰峰矿区煤矿开采后矿区地下水多环芳烃(PAHs)的分布和来源,在矿区采集并分析了15件奥灰水样品,对样品中16种PAHs的含量进行统计分析,并运用氢氧同位素和同分异构体比值相结合的方法分析确定了其污染来源。结果表明:峰峰矿区奥灰水中PAHs总质量浓度为0.06~0.56ng/L,呈现出萘(Nap)、菲(Phe)、蒽(Ant)、荧蒽(Flt)、芘(Pyr)、芴(Flu)为主的2~4环PAHs低浓度高检出特征;Ant/(Ant+Phe)—Flt/(Flt+Pyr)结果表明奥灰水中PAHs主要来自煤和生物质的燃烧;δD—δ18 O、δD—Phe结果表明,奥灰水中的PAHs主要来源于煤和生物质燃烧产物在高海拔基岩裸露地区随降雨直接入渗补给;少数来源于潜水、矿井水和煤系基岩水等的越流补给。  相似文献   

9.
研究了鼠李糖脂浓度对3种多环芳烃(PAHs)菲、荧蒽和芘去除率的影响,以及对土壤微生物群落结构的影响。结果表明,培养35d后,鼠李糖脂质量浓度为100~200mg/kg时,菲、荧蒽和芘的去除率相对最高,土壤中细菌16SrRNA基因和phnAc基因的丰度也达到最大。土壤中天然的PAHs降解菌群主要是假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)、鞘氨醇单胞菌属(Sphingomonas)、溶杆菌属(Lysobacter)和环脂酸芽孢杆菌属(Tumebacillus)等;加入鼠李糖脂后,赭黄嗜盐囊菌属(Haliangium)和土壤红杆菌属(Solirubrobacter)的丰度增加,促进了PAHs更高效的降解。  相似文献   

10.
为测定植烟土壤中16种多环芳烃(PAHs)的含量,建立并优化了土壤样品的洗脱净化方法,比较了不同洗脱剂、净化方法及净化条件的提取效果。结果表明,3种洗脱剂中正己烷-二氯甲烷混合液(体积比1∶1)洗脱效果最好,四通道色谱分离仪法在提取效果、溶剂耗量、操作时间上均优于硅胶柱法。在最佳操作条件下(洗脱剂用量2 m L/次、洗脱时间50 s/次)洗脱5次后采用气相色谱—质谱联用仪对16种PAHs进行检测,16种PAHs均在20~2 000μg/L内呈线性关系(R0.99),仪器检出限为0.72~2.09μg/L,植烟土壤中16种PAHs的加标回收率为80.3%~114.4%,相对标准偏差为4.2%~12.3%。该方法简便、高效,能准确测定出植烟土壤中16种PAHs的含量。  相似文献   

11.
Distributions and concentrations of PAHs in Hong Kong soils   总被引:19,自引:0,他引:19  
Surface soil (0-10 cm) samples from 53 sampling sites including rural and urban areas of Hong Kong were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). Total PAH concentrations were in the range of 7.0-410 microg kg(-1) (dry wt), with higher concentrations in urban soils than that in rural soils. The three predominant PAHs were Fluoranthene, Naphthalene and Pyrene in rural soils, while Fluoranthene, Naphthalene and Benzo(b + k)fluoranthene dominated the PAHs of urban soils. The values of PAHs isomer indicated that biomass burning might be the major origin of PAHs in rural soils, but vehicular emission around the heavy traffic roads might contribute to the soil PAHs in urban areas. A cluster analysis was performed and grouped the detectable PAHs under 4 clusters, which could be indicative of the PAHs with different origins and PAHs affected by soil organic carbon contents respectively.  相似文献   

12.
Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing, China   总被引:6,自引:0,他引:6  
Yin CQ  Jiang X  Yang XL  Bian YR  Wang F 《Chemosphere》2008,73(3):389-394
The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in vegetable soils from five vegetable fields (including: Liuhe, Xixia, Pukou, Jianye and Yuhua districts) in Nanjing outskirt were investigated with high performance liquid chromatography (HPLC) equipped with fluorescence detector. The total concentrations of 15 priority PAHs in 126 soil samples ranged from 21.91 to 533.84ngg(-1) dry weight, and the sum of seven carcinogenic PAHs concentrations varied from 1.48 to 236.19ngg(-1) dry weight. Statistical analysis of the PAHs concentrations showed that the highest PAHs concentration was observed in Liuhe, and the lowest PAHs concentrations were found in Xixia among the five districts. The ratios of fluoranthene to sum of fluoranthene and pyrene concentrations (Flt/(Flt+Pyr)) were more than 0.5 in 99% of vegetable soil samples, showing that the PAHs in soils were generally derived from straw and coal combustion sources. The results from principal component analysis (PCA) further indicated that extensive combustion activities affected the PAHs distribution in Nanjing vegetable soils.  相似文献   

13.
A PAH contaminated river floodplain soil was separated according to grain size and density. Coal and coal-derived particles from coal mining, coal industry and coal transportation activities were identified by organic petrographic analysis in our samples. Distinct concentrations of PAHs were found in different grain size and density fractions, however, similar distribution patterns of PAHs indicated similar sources. In addition, although light fractions had the mass fraction by weight of less than 5%, they contributed almost 75% of the total PAHs in the soil. PAH concentrations of all sub fractions showed positive correlation with their TOC contents. Altogether, coal and coal-derived particles that were abundant in light fractions could be the dominant geosorbents for PAHs in our samples.  相似文献   

14.
A microcosm study was conducted to address the influences of air-soil partition and sequestration on the fate of polycyclic aromatic hydrocarbons (PAHs) in soil. Sterilized and unsterilized soils with soil organic carbon (SOC) content ranging from 0.23 to 7.06% were incubated in a chamber with six PAHs supplied through air. After 100 d of incubation when the system approached pseudo-steady state, the PAHs concentrations in the unsterilized soils still correlated with SOC significantly, while the association did not exist for those sterilized. The lower degradation rate in the soil with higher SOC was likely the major reason for the association between SOC and PAHs concentrations, while the decreased surface porosity likely suppressed such correlation for the sterilized samples. The results indicated that the sequestration was likely the major mechanism for the accumulation of PAHs in soils, while both of the soil porosity and PAHs properties had observed influences.  相似文献   

15.
Levels of PAHs in soil and vegetation samples from Tarragona County, Spain   总被引:20,自引:0,他引:20  
The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 24 soil and 12 wild chard samples collected in Tarragona County (Catalonia, Spain), an area with an important number of chemical and petrochemical industries. Samples were also collected in urban/residential zones and in presumably unpolluted sites (control samples). In soils, the sum of the 16 PAHs ranged between 1002 and 112 ng/g (dry weight) for samples collected near chemical industries and unpolluted sites, respectively. With the exception of acenaphthylene, acenaphthene, anthracene and benzo[k]fluoranthene, no significant differences in the levels of the remaining PAHs were found among the different zones of sample collection. In chard samples, the highest value (sum of 16 PAHs) was observed in the residential area, followed by the industrial and the unpolluted zones, with concentrations of 179, 58 and 28 ng/g (dry weight), respectively. In general terms, the current PAH concentrations in soil and vegetation are lower than the levels reported in a number of investigations from different regions and countries. They are also below the maximum PAH concentrations allowed by the Catalan legislation for different uses of soil.  相似文献   

16.
Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) in cabbage (aerial part), air (gas and particles) and soil samples collected from two sites in Tianjin, China were measured. Although the levels of PAHs in all samples from the heavily contaminated site B were higher than those from the less contaminated site A, the PAH profiles were similar, suggesting the similarity in source type. PAH concentrations in cabbages were positively correlated to either gas or particle-bound PAHs in air. A multivariate linear regression with cabbage PAH as a function of both gas and particle-bound PAHs in air was established to quantitatively characterize the relationship between them. Inclusion of soil PAH concentrations would not improve the model, indicating that the contribution of soil PAHs to cabbage (aerial part) accumulation was insignificant.  相似文献   

17.
The levels and distribution of polynuclear aromatic hydrocarbons (PAHs) were determined in soil samples from background locations in the UK and Norway, to investigate their spatial distribution and the controlling environmental factors. Concentrations ranged between 42 and 11200 microg kg(-1) (geometric mean 640 microg kg(-1)) and 8.6 and 1050 microg kg(-1) (150 microg kg(-1)) dry weight in the UK and Norwegian soil, respectively. Proximity to sources and locations susceptible to high atmospheric depositional inputs resulted in higher concentrations. Statistically significant relationships were observed between PAH and total organic carbon (TOC) in the Norwegian samples. High molecular weight PAHs correlated with black carbon (BC) in UK-woodland soil. These observations support the hypothesis that TOC plays an important role in the retention of PAHs in soil and that PAHs are often combined with BC during combustion emissions. PAHs with 4 and more rings comprised approximately 90% of total PAHs in the UK soil, but only 50% in the Norwegian soil. The mixture of PAHs implied that fractionation occurred during long-range atmospheric transport and deposition. The lighter PAHs with lower K(ow) values more readily reached the most remote sites. The heavier PAHs with higher K(ow) values remained in closer proximity to sources.  相似文献   

18.
Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.  相似文献   

19.
Before wood ash can be used as a soil fertilizer, concentrations of environmentally hazardous compounds must be investigated. In this study, total and leachable concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in four ash samples and one green liquor sludge. The ash sample with the highest carbon content also contained high levels of PAHs; three of the ash samples had total concentrations exceeding the limit permitted by the Swedish Forest Agency for recycling to forest soils. The leachable concentrations were higher for the non-stabilized samples; this was probably due to colloid-facilitated transport of the contaminants in these samples. However, the leachable concentrations were overall relatively low in all the samples studied. The amounts of PAHs introduced to forest soils by additions of stabilized, recyclable ash products will be determined primarily by the rate of weathering of the ash particles and the total concentration of contaminants.  相似文献   

20.
The biodegradation of polycyclic aromatic hydrocarbons in microecosystems containing long-term contaminated soil was investigated. Soil was contaminated by different chemicals, including PAHs since World War II. Aging of the soil was expected to act as a principal factor limiting biodegradation. Half of the microecosystems contained ryegrass (Lolium perenne) and long-term selected natural soil microflora originally present in contaminated soil. The others contained contaminated soil with natural microflora only. Half of the microecosystems in each parallel experiment was fertilised with N-P-K fertiliser. Cultivation was carried out at 12 and 18 months in a greenhouse with a natural photoperiod and the ability to degrade 15 chosen PAH was investigated. For analysis, the soil from each pot was divided into three horizontal layers for mutual comparison among layers and each layer was further divided into four equal samples. Soil extracts were analysed using HPLC. After a one-year-cultivation period the content of the monitored PAHs declined to 50%. Mostly, there were no significant differences between the microecosystems. Best degraded were fluoranthene and pyrene, which were the major contaminants present in original soil. Also, other compounds were successfully degraded, even benzo[a]pyrene and benzo[ghi]perylene. Dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene were the only PAHs, examined that showed no significant degradation. Although some differences between the soil layers were detected, no conclusive trends could be found. However, significantly lower concentrations of PAHs were determined mostly in the bottom layer of the analysed profiles. In vegetated microecosystems the decline of PAHs concentrations was more remarkable after 18 months cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号