首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ralstonia sp. SA-3, Ralstonia sp. SA-4 and Pseudomonas sp. SA-6 are natural strains with a novel capacity to utilize meta-substituted dichlorobiphenyls (diCBs) hitherto not known to serve as a sole source of carbon and energy for polychlorobiphenyl-degraders. In growth experiments, axenic cultures of isolates grew logarithmically on 3,3'-diCB with generation times that ranged insignificantly (t-test, P>0.05) from 30.4 to 33.8 h. Both 3-chlorobenzoate (3-CBA) and chloride produced as metabolites were recovered in non-stoichiometric quantities. The release of chloride by the cultures lagged substantially, indicating that the initial dioxygenase attack preceded cleavage of carbon-chloride bonds and that chloride must have been released from the chlorinated hydroxypentadienoate. In the case of 3,5-diCB, SA-3 and SA-6 metabolised this substrate primarily to 3,5-CBA. The lack of chloride in the culture media coupled with stoichiometric recovery of 3,5-CBA suggests that growth by these strains occurred predominantly at the expense of the unsubstituted phenyl ring. The unique metabolic properties of these three aerobic isolates point to their potential usefulness as seeds for bioremediation of PCBs polluted environments without the need for repeated inoculation or supplementation by a primary growth substrate such as biphenyl.  相似文献   

2.
Polti MA  Amoroso MJ  Abate CM 《Chemosphere》2007,67(4):660-667
Forty-one isolated actinomycetes were used to study qualitative and semi-quantitative screening of chromium(VI) resistance. Chromate-removing activity was estimated using the Cr(VI) specific colorimetric reagent 1,5-diphenylcarbazide. Twenty percent of the isolates from El Cadillal (EC) and 14% of isolates from a copper filter plant (CFP) were able to grow at 13 mM of Cr(VI). All isolates from sugar cane (SCP) could grow up to Cr(VI) concentration of 17 mM. EC, CFP and SCP strains were able to remove 24%, 30% and more than 40% of Cr(VI), respectively. The highest and lowest Cr(VI) specific removal values were 75.5 mg g(-1) cell by M3 (CFP), and 1.5 mg g(-1) cell by C35 (EC) strains. Eleven Cr(VI) resistant strains were characterized and identified as species of the genera Streptomyces (10) and Amycolatopsis (1). Differences on actinomycete community composition between contaminated and non-contaminated soil were found. This study showed the potential capacity of actinomycetes as tools for Cr(VI) bioremediation.  相似文献   

3.
In this study we investigated the effect of uranium on the growth of the bacterium Thermus scotoductus strain SA-01 as well as the whole cell U(VI) reduction capabilities of the organism. Also, site-directed mutagenesis confirmed the identity of a protein capable of a possible alternative mechanism of U(VI) reduction. SA-01 can grow aerobically in up to 1.25 mM uranium and has the capability to reduce low levels of U(VI) in under 20 h. TEM analysis performed on cells exposed to uranium showed extracellular and membrane-bound accumulation of uranium. The reductase-like protein was surprisingly identified as a peptide ABC transporter, peptide-binding protein. This study showcases the concept of protein promiscuity, where this protein with a distinct function in situ can also have the unintended function of a reactant for the reduction of U(VI).  相似文献   

4.
Jiang Y  Wen J  Caiyin Q  Lin L  Hu Z 《Chemosphere》2006,65(7):1236-1241
He-Ne laser technology was utilized in this study to investigate the response of Alcaligenes faecalis to laser stimulation. The irradiation experiments were conducted by the adjustment of the output power from 5 to 25 mW and the exposure time from 5 to 25 min. The results showed that the survival rate changed regularly with the variety of irradiation dose, and high positive mutation frequency was determined by both the energy density and the output power. The mutant strain AFM 2 was obtained. Phenol biodegradation assay demonstrated that AFM 2 possessed a more prominent phenol-degrading potential than its parent strain, which presumably attributed to the improvements of phenol hydroxylase and catechol 1,2-dioxygenase activities. The phenol of 2000 mgl(-1) was completely degraded by AFM 2 within 85.5h at 30 degrees C. In addition, the cell growth and phenol degradation kinetics of the mutant strain AFM 2 and its parent strain in batch cultures were also investigated at the wide initial phenol concentration ranging from 0 to 2000 mgl(-1) by Haldane model. The results of these experiments further demonstrated that the mutant strain AFM 2 possessed a higher capacity to resist phenol.  相似文献   

5.
Ten halophilic Archaea (Haloarchaea) strains able to degrade aromatic compounds were isolated from five hypersaline locations; salt marshes in the Uyuni salt flats in Bolivia, crystallizer ponds in Chile and Cabo Rojo (Puerto Rico), and sabkhas (salt flats) in the Persian Gulf (Saudi Arabia) and the Dead Sea (Israel and Jordan). Phylogenetic identification of the isolates was determined by 16S rRNA gene sequence analysis. The isolated Haloarchaea strains were able to grow on a mixture of benzoic acid, p-hydroxybenzoic acid, and salicylic acid (1.5 mM each) and a mixture of the polycyclic aromatic hydrocarbons, naphthalene, anthracene, phenanthrene, pyrene and benzo[a]anthracene (0.3 mM each). Evaluation of the extent of degradation of the mixed aromatic hydrocarbons demonstrated that the isolates could degrade these compounds in hypersaline media containing 20% NaCl. The strains were shown to reduce the COD of hypersaline crude oil reservoir produced waters significantly beyond that achieved using standard hydrogen peroxide treatment alone.  相似文献   

6.
3,4-Dichloro- and 3,4-difluoroanilines were degraded by Pseudomonas fluorescens 26-K under aerobic conditions. In the presence of glucose strain degraded 170 mg/L of 3,4-dichloroaniline (3,4-DCA) during 2-3 days. Increasing of toxicant concentration up to 250 mg/L led to degradation of 3,4-DCA during 4 days and its intermediates during 5-7 days. Without cosubstrate and nitrogen source degradation of 3,4-DCA took place too, but more slowly--about 40% of toxicant at initial concentration 75 mg/L was degraded during 15 days. 3,4-Difluoroaniline (3,4-DFA) (initial concentration 170 mg/L) was degraded by Pseudomonas fluorescens 26-K during 5-7 days. The strain was able to completely degrade up to 90 mg/L of 3,4-DFA, without addition of cosubstrate and nitrogen during 15 days. Degradation of fluorinated aniline was accompanied by intensive defluorination. Activity of catechol 2,3-dioxygenase (C2,3DO) (0.230 micromol/min/mg of protein) was found in the culture liquid of the strain, grown with 3,4-DCA and glucose. This fact, as well as, the presence of 3-chloro-4-hydroxyaniline as a metabolite suggested that 3,4-DCA degradation pathway includes dehalogenation and hydroxylation of aromatic ring followed by its subsequent cleaving by C2,3DO. On the contrary, activity of catechol 1,2-dioxygenase (C1,2DO) (0.08 micromol/min/mg of protein) was found in the cell-free extract of biomass grown on 3,4-DFA. 3-Fluoro-4-hydroxyaniline as intermediate was found in this cell-free extract.  相似文献   

7.
Lee TH  Kim J  Kim MJ  Ryu HW  Cho KS 《Chemosphere》2006,63(2):315-322
With ketone pollution forming an ever-growing problem, it is important to identify a ketone-degrading microorganism and establish its effect. Here, a methyl ethyl ketone (MEK)-degrading bacterium, Pseudomonas sp. KT-3, was isolated and its MEK degradation characteristics were examined in liquid cultures and a polyurethane-packed biofilter. In liquid cultures, strain KT-3 could degrade other ketone solvents, including diethyl ketone (DK), methyl propyl ketone (MPK), methyl isopropyl ketone (MIPK), methyl isobutyl ketone (MIBK), methyl butyl ketone (MBK) and methyl isoamyl ketone (MIAK). The maximum specific growth rate (mumax) of the isolate was 0.136 h(-1) in MEK medium supplemented with MEK as a sole carbon source, and kinetically, the maximum removal rate (Vm) and saturation constant (Km) for MEK were 12.28 mM g(-1)DCW h(-1) (DCW: dry cell weight) and 1.64 mM, respectively. MEK biodegradation by KT-3 was suppressed by the addition of MIBK or acetone, but not by toluene. In the tested biofilter, KT-3 exhibited a>90% removal efficiency for MEK inlet concentrations of around 500 ppmv at a space velocity (SV) of 150 h(-1). The elimination capacity of MEK was more influenced by SV than by the inlet concentration. Kinetic analysis showed that the maximum MEK removal rate (Vm) was 690 g m(-3) h(-1) and the saturation constant (Km) was 490 ppmv. Collectively, these results indicate the polyurethane sequencing batch biofilter with Pseudomonas sp. KT-3 will provide an excellent performance in the removal of gaseous MEK.  相似文献   

8.
The aim of the present work was to investigate the influence of alkylhydroxybenzenes (AHBs) and tyrosol, which belong to cell differentiation factors d(1) group of autoregulators on properties of biodegradation enzymes, catechol 1,2-dioxygenase (Cat 1,2-DO) and methylcatechol 1,2-dioxygenase (MCat 1,2-DO) of Rhodococcus opacus 6a. AHBs were found to have a greater effect on MCat 1,2-DO than on Cat 1,2-DO. It was expressed by more pronounced changes in the activity of MCat 1,2-DO with unsubstituted catechol at different AHB concentrations and by increasing thermostability of MCat 1,2-DO compared to Cat 1,2-DO under the protective action of AHBs. The compound C(7)-AHB shifted the maximum of dioxygenase activities towards higher temperatures and increased their operation optimum. AHBs changed the specificity constant of dioxygenases by decreasing/increasing the K(m)/V(max) value. For example, the increase in the V(max) value of 3,6-dichlorocatechol oxidation by Cat 1,2-DO in the presence of C(7)-AHB was 300-fold higher compared to the same reaction without AHB. The influence of cell differentiation factors on the properties of dimeric enzymes has been shown for the first time. It gives an idea of how the specificity of enzymes can be changed in vivo when strains contact new substrates. The work has shown the possibility of modification of the properties of dimeric enzymes towards the extension of enzyme activity with difficulty converted substrates or in more extreme conditions, which may be important for biotechnological processes.  相似文献   

9.
Dissipation kinetics of mesotrione, a new triketone herbicide, sprayed on soil from Limagne (Puy-de-Dôme, France) showed that the soil microflora were able to biotransform it.Bacteria from this soil were cultured in mineral salt solution supplemented with mesotrione as sole source of carbon for the isolation of mesotrione-degrading bacteria. The bacterial community structure of the enrichment cultures was analyzed by temporal temperature gradient gel electrophoresis (TTGE). The TTGE fingerprints revealed that mesotrione had an impact on bacterial community structure only at its highest concentrations and showed mesotrione-sensitive and mesotrione-adapted strains. Two adapted strains, identified as Bacillus sp. and Arthrobacter sp., were isolated by colony hybridization methods.Biodegradation assays showed that only the Bacillus sp. strain was able to completely and rapidly biotransform mesotrione. Among several metabolites formed, 2-amino-4-methylsulfonylbenzoic acid (AMBA) accumulated in the medium. Although sulcotrione has a chemical structure closely resembling that of mesotrione, the isolates were unable to degrade it.  相似文献   

10.
Mishra RR  Prajapati S  Das J  Dangar TK  Das N  Thatoi H 《Chemosphere》2011,84(9):1231-1237
Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40 °C) and salt concentration (4-12%) having an optimum growth at 37 °C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles.  相似文献   

11.
The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L?1. The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200–250 mg L?1) and high (4 g L?1) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate.  相似文献   

12.

Introduction

The effect of oceanic CO2 sequestration was examined exposing a deep-sea bacterium identified as Vibrio alginolyticus (9NA) to elevated levels of carbon dioxide and monitoring its growth at 2,750 psi (1,846 m depth).

Findings

The wild-type strain of 9NA could not grow in acidified marine broth below a pH of 5. The pH of marine broth did not drop below this level until at least 20.8 mM of CO2 was injected into the medium. 9NA did not grow at this CO2 concentration or higher concentrations (31.2 and 41.6 mM) for at least 72 h. Carbon dioxide at 10.4 mM also inhibited growth, but the bacterium was able to recover and grow. Exposure to CO2 caused the cell to undergo a morphological change and form a dimple-like structure. The membrane was also damaged but with no protein leakage.  相似文献   

13.
14.
Four efficient Cr(VI)-reducing bacterial strains were isolated from rhizospheric soil of plants irrigated with tannery effluent and investigated for in vitro Cr(VI) reduction. Based on 16S rRNA gene sequencing, the isolated strains SUCR44, SUCR140, SUCR186, and SUCR188 were identified as Bacillus sp. (JN674188), Microbacterium sp. (JN674183), Bacillus thuringiensis (JN674184), and Bacillus subtilis (JN674195), respectively. All four isolates could completely reduce Cr(VI) in culture media at 0.2 mM concentration within a period of 24–120 h; SUCR140 completely reduced Cr(VI) within 24 h. Assay with the permeabilized cells (treated with Triton X-100 and Tween 80) and cell-free assay demonstrated that the Cr(VI) reduction activity was mainly associated with the soluble fraction of cells. Considering the major amount of chromium being reduced within 24–48 h, these fractions could have been released extracellularly also during their growth. At the temperature optima of 28 °C and pH?7.0, the specific activity of Cr(VI) reduction was determined to be 0.32, 0.42, 0.34, and 0.28 μmol Cr(VI)?min?1?mg?1 protein for isolates SUCR44, SUCR140, SUCR186, and SUCR188, respectively. Addition of 0.1 mM NADH enhanced the Cr(VI) reduction in the cell-free extracts of all four strains. The Cr(VI) reduction activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg2+. Beside this, urea and thiourea also reduced the activity of chromate reduction to significant levels.  相似文献   

15.
Thirty bacterial strains with various abilities to utilize glyphosate as the sole phosphorus source were isolated from farm soils using the glyphosate enrichment cultivation technique. Among them, a strain showing a remarkable glyphosate-degrading activity was identified by biochemical features and 16S rRNA sequence analysis as Ochrobactrum sp. (GDOS). Herbicide (3 mM) degradation was induced by phosphate starvation, and was completed within 60 h. Aminomethylphosphonic acid was detected in the exhausted medium, suggesting glyphosate oxidoreductase as the enzyme responsible for herbicide breakdown. As it grew even in the presence of glyphosate concentrations as high as 200 mM, Ochrobactrum sp. could be used for bioremediation purposes and treatment of heavily contaminated soils.  相似文献   

16.
在含有真菌G 1培养液中加入染料厂污水排放口的污泥样品 ,从发生快速脱色降解染料的混合培养液中分离出 2株染料脱色细菌L_1和L_2 ,经API鉴定系统鉴定 ,确定菌株L_1为Enterobactersp .,菌株L_2为Peudomonassp .。研究比较了单一和不同组合混合的真菌G_1菌株 (Penicilliumsp .)、细菌L_1菌株 (Enterobactersp .)和L_2菌株 (Pseu domonassp .)对偶氮染料红M - 3BE(C .I .ReactiveRed 2 41)和蒽醌染料艳蓝KN -R(C .1.ReactiveBlue 19)的去除情况 ,发现G - 1真菌和 2种细菌组合的共培养体系对 5 0mg/L红M - 3BE和艳蓝KN -R处理 5h去除率达 10 0 %和 97.9% ,并且是以脱色降解作用为主 ,建立了染料脱色降解菌的最佳组合 ;进一步测定了此最佳共培养体系对另外 13种不同结构染料的脱色降解 ,结果表明 ,除对蒽醌染料R - 478脱色降解较差外 ,对其他染料均可在lh— 3d被完全脱色降解 ,表现出脱色降解染料的广谱性 ;向培养 4d的共培养体系中依次加入 8种染料 ,菌体可对染料连续脱色 ,维持脱色能力达 8d左右  相似文献   

17.
The effect of six glyphosate concentrations on growth rate and aflatoxin B1 (AFB1) production by Aspergillus section Flavi strains under different water activity (aW) on maize-based medium was investigated. In general, the lag phase decreased as glyphosate concentration increased and all the strains showed the same behavior at the different conditions tested. The glyphosate increased significantly the growth of all Aspergillus section Flavi strains in different percentages with respect to control depending on pesticide concentration. At 5.0 and 10 mM this fact was more evident; however significant differences between both concentrations were not observed in most strains. Aflatoxin B1 production did not show noticeable differences among different pesticide concentrations assayed at all aW in both strains. This study has shown that these Aspergillus flavus and A. parasiticus strains are able to grow effectively and produce aflatoxins in high nutrient status media over a range of glyphosate concentrations under different water activity conditions.  相似文献   

18.
A soil which has been polluted with chlorinated benzenes for more than 25 years was used for isolation of adapted microorganisms able to mineralize 1,2,4-trichlorobenzene (1,2,4-TCB). A microbial community was enriched from this soil and acclimated in liquid culture under aerobic conditions using 1,2,4-TCB as a sole available carbon source. From this community, two strains were isolated and identified by comparative sequence analysis of their 16S-rRNA coding genes as members of the genus Bordetella with Bordetella sp. QJ2-5 as the highest homological strain and with Bordetella petrii as the closest related described species. The 16S-rDNA of the two isolated strains showed a similarity of 100%. These strains were able to mineralize 1,2,4-TCB within two weeks to approximately 50% in liquid culture experiments. One of these strains was reinoculated to an agricultural soil with low native 1,2,4-TCB degradation capacity to investigate its bioremediation potential. The reinoculated strain kept its biodegradation capability: (14)C-labeled 1,2,4-TCB applied to this inoculated soil was mineralized to about 40% within one month of incubation. This indicates a possible application of the isolated Bordetella sp. for bioremediation of 1,2,4-TCB contaminated sites.  相似文献   

19.
Glutathione S-transferase (GST) and peroxidase (POX) activities have a direct relation to the effect of stress on plant metabolism. Changes in the activities of the enzymes were therefore studied. Horseradish hairy roots were treated by selected bivalent ions of heavy metals (HMs) and nitroaromatic compounds (NACs). We have shown differences in GST activity when assayed with substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB). The conjugation of DCNB catalysed by GST was inhibited in all roots treated with HMs as compared to non-treated roots, whereas NACs caused induction of the activity in dependence on the exposition time and concentration of compounds. The conjugation of CDNB by GST was not affected to the same extent. The increase of GST activity was determined in cultures treated by nickel (0.1 mM) and diaminonitrotoluenes (DANTs, 0.1 mM) for 6 h, whereas the roots treated by 2,4,6-trinitrotoluene (TNT), 4-amino-2,6-dinitrotoluene (ADNT) and dinitrotoluene (DNT, 1.0 mM) needed 27 h treatment to induce the activity. The POX activity of cultures treated by HMs was inhibited to 17-35% in comparison to non-treated cultures. The POX activity of roots treated by TNT (0.1 and 1.0 mM) for 6 and 27 h and by ADNT (0.1 and 1.0 mM) for 6 h was inhibited. A partial increase of POX activity was measured in roots treated by all NACs for 27 h. The content of oxidized glutathione (GSSG) and reduced glutathione (GSH) in the roots differed significantly. It was followed as a symptom of the stress reaction of the plant metabolism to the effect of NACs and HMs.  相似文献   

20.
Biphenyl degrading bacteria (40 strains) have been isolated along a gradient of chlorobenzene pollution from an aquifer which did not contain any PCB to answer the question of how metabolic/catabolic abilities exist in ecosystems that have not been stressed with the relevant substrates is important for intrinsic bioremediations. Only few of the isolates were characterized by 16S rRNA gene sequence analyses as Pseudomonas species while the majority were Gram-positive, belonging to the order Actinomycetales and representing the genera Rhodococcus and Arthrobacter. The strains could grow on a variety of chlorobenzoates but no pattern of substrate usage and phylogeny or pollution gradient could be found. Strains which were able to grow on 2,5-dichlorobenzoate were often also able to use 3,4- and 3,5-dichloro- and 2,3,5-trichlorobenzoate or those using 2-chlorobenzoate could usually use 2,6-dichlorobenzoate as well. From that results, it is concluded that a highly diverse, basic metabolic activity for PCB degradation existed at this site despite the absence of PCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号