首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag+ ions (as AgNO3). The stability of the nano-silver dispersions in untreated Ottawa River water, with a dissolved organic carbon concentration of 6 mg/L, was significantly higher than the stability of the nano-silver dispersions in distilled, organic-free water. Nano-silver particles suspended in the groundwater agglomerated and were quickly and quantitatively removed from the solution. Our data confirm previous observations that natural dissolved organic matter stabilizes nano-silver particles, while the high-ionic strength of groundwater appears to favor their agglomeration and precipitation. As expected, nano-silver was not stable in Ottawa River water through the chlorination process, but survived for many days when added to the Ottawa River water after treatment with chlorine or chloramines. Stirring appeared to have minimal effect on nano-silver stability in untreated and treated Ottawa River water. The profile of DBPs formed in the presence of nAg differed significantly from the profile of DBPs formed in the absence of nAg only at the 1 mg/L nAg concentration. The differences observed consisted mainly in reduced formation of some brominated DBPs and a small increase in the formation of cyanogen chloride. The reduced formation of brominated congeners may be explained by the decrease in available bromide due to the presence of Ag+ ions. It should be noted that a concentration of 1 mg/L is significantly higher than nAg concentrations that would be expected to be present in surface waters, but these results could be significant for the disinfection of some wastewaters with comparably high nano-silver concentrations.  相似文献   

2.
Disinfection by-products in Finnish drinking waters   总被引:11,自引:0,他引:11  
Disinfection by-products (DBPs) were measured in plant effluents of 35 Finnish waterworks, which utilized different treatment processes and raw water sources. DBPs were measured also from the distribution systems of three waterworks. Di- and trichloroacetic acids, and chloroform were the major DBPs found in treated water samples. The concentration of six haloacetic acids (HAA6) exceeded the concentrations of trihalomethanes (THMs). Chlorinated drinking waters (DWs) originating from surface waters contained the highest concentration of HAA6 and THMs: 108 and 26 microg/l, respectively. The lowest concentrations of DBPs were measured from ozonated and/or activated carbon filtrated and chloraminated DWs. Higher concentrations of HAA6, THMs, and adsorbable organic halogens were measured in summer compared to winter. The levels of chlorinated acetic acids, chloroform, and bromodichloromethane correlated positively with mutagenicity. Past mutagenicity levels of DWs were examined. A major reduction in the use of prechlorination, increased use of chloramine disinfection, and better removal of organic carbon were the most important reasons for the 69% decrease in mutagenicity from 1985 to 1994.  相似文献   

3.
饮用水消毒副产物研究状况   总被引:4,自引:1,他引:3  
本文介绍了饮用水中消毒副产物的研究状况。其中重点介绍了饮用水的消毒方式及四类消毒副产物的产生、浓度、存在形态及影响因素等。简单介绍了饮用水中消毒副产物的采集、前处理方法及污染控制对策等  相似文献   

4.
Application of chlorination for the disinfection of drinking water results in the formation of a wide range of organic compounds, called disinfection by-products (DBPs), which occur due to the reaction of chlorine with natural organic materials. The occurrence of DBPs was studied in samples from four drinking-water treatment plants (WTPs) and from the distribution network of Athens, Greece. Twenty-four compounds, which belong to different categories of DBPs, were monitored, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HAKs), chloral hydrate (CH) and chloropicrin (CP). Sampling was performed monthly for a period of two years, from three different points at each WTP and from eight points atthe distribution network. Samples were analyzed by GC-ECD methods, which included pretreatment with liquid-liquid extraction for volatile DBPs and acidic methanol esterification for HAAs. The results of the analyses have shown the presence of disinfection by-products belonging to all categories studied in all water samples collected after prechlorination. The major categories of DBPs detected were THMs and HAAs, while the other volatile DBPs occurred at lower concentrations. The concentrations of DBPs did not in any case exceed the maximum contaminant levels (MCL) set by USEPA and WHO. However, monitoring these compounds needs to be continued, because their levels could increase due to changes in the quality of water entering the water treatment plants. Reduction of the concentrations of DBPs could be achieved by optimization of the chlorination conditions, taking into account the effect of time. Moreover, research on alternative disinfection methods (e.g. ozone, chlorine dioxide, chloramines) and their by-products should be conducted to evaluate their applicability in the case of the drinking water of Greece.  相似文献   

5.
Kristiana I  Joll C  Heitz A 《Chemosphere》2011,83(5):661-667
The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.  相似文献   

6.
Toor R  Mohseni M 《Chemosphere》2007,66(11):2087-2095
The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0–3500 mJ cm−2) and hydrogen peroxide concentration (0–23 mg l−1) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm−2and initial H2O2 concentrations of about or greater than 23 mg l−1. However, the combined AOP–BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.  相似文献   

7.
Minimization of the formation of disinfection by-products   总被引:1,自引:0,他引:1  
The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA254), specific UV absorbance at 254 nm (SUVA254), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.  相似文献   

8.
In the pioneer days, the main driving forces for research of organics in drinking water treatment (DWT) were human health risks and optimisation of technology. The focus was on natural organic matter (NOM) structure, disinfection by-products (DBPs) formation, NOM removal by means of coagulation, adsorption, and oxidation, and development of the most efficient water treatment trains. Surprisingly, after decades of research, rapid development of analytical techniques and progress in risk assessment, the same driving forces are still in the limelight — although the topics have changed slightly. The attention switched from trihalomethanes to a new generation of DBPs. The definition of hydrophilic/hydrophobic NOM depends on the technique used for characterisation. It has become evident that numerous organic compounds can threaten water supply sources. Some of them had been ignored or overlooked in the past, but have recently been detected by advanced analytical tools even in drinking water. Prioritisation becomes priority per se. As far as processes are concerned, mainstream research has been following three lines: fouling mechanisms, application of hybrid processes and interactions between synthetic organic chemicals, other water constituents and materials used in DWT. Significant development has been made in membrane technology. This paper presents a broad overview of the recent organics research. Although the state-of-the-art technologies seem to have an answer to each and every question raised, it is still necessary to deal with specific problems on a case-by-case basis mainly due to the unique nature of NOM and different xenobiotics that may appear in various types of waters. In the end, human health risk, which derives from the presence/absence of organics, is only the tip of the iceberg — underneath lies a whole new universe — the socio-economic aspect of water treatment and quality that deserves much more attention.  相似文献   

9.
采用活性炭多维电极法去除水中溶解态腐殖酸。实验结果表明 ,与活性炭单纯吸附法相比 ,活性炭多维电极法可显著提高对溶解态腐殖酸的去除率 ;在连续运行条件下 ,延长水力停留时间、升高槽电压、溶液偏碱性有利于腐殖酸的去除 ;高效液相色谱分析结果表明 ,电极的氧化还原作用可使有机物分子量变小或矿化 ,因而处理系统有可能延长活性炭的使用寿命  相似文献   

10.
Background, aim and scope  The use of sodium hypochlorite (HYP) in viticulture results in effluents which are contaminated with halogenated substances. These disinfection by-products (DBPs) can be quantified as group parameter ‘adsorbable organic halogens’ (AOX) and have not been determined in effluents of viticulture yet. The substances that are detected as AOX are unknown. The AOX can be composed of harmless substances, but even toxic contaminants. Thus, it is impossible to assess ecological impacts. The aim of this study is to determine the quantification of AOX and DBPs after the use of HYP. This will be helpful to reduce environmental pollution by AOX. Materials and methods  The potential of HYP to generate AOX was determined in laboratory-scale experiments. Different model solutions were treated with HYP according to disinfection processes in viticulture and conditions of AOX formation in effluents were simulated. AOX were quantified using the flask-shaking method and identified DBPs were investigated by gas chromatography–mass spectrometry. Results  Treatment with HYP resulted in the formation of AOX. The percentage conversion of HYP to AOX was up to 11%. Most important identified DBPs in viticulture are chloroform, dichloroacetic acid and trichloroacetaldehyde. In addition, the formation of carbon tetrachloride (CT), 1,1,1-trichloropropanone, 2,4-dichlorobenzoic acid and 2-chloro-/2,4-dichlorophenylacetic acid was investigated. It was demonstrated that reaction temperature, concentration of HYP and type of organic matter have important influence on the formation of chlorinated DBPs. Discussion  The percentage conversion of HYP to AOX was similar to other published studies. Although a correlation of single compounds and AOX is difficult, chloroform was the predominant AOX. Generation of the volatile chloroform should be avoided due to possible adverse effects. The generation of dichloroacetic acid is of minor importance on account of biodegradation. Trichloroacetaldehyde and 1,1,1-trichloropropanone are weak mutagens and their formation should be avoided. Conclusions  The generation of AOX and chlorinated DBPs can be minimised by reducing the concentrations of the organic materials in the effluents. The removal of organic matter before disinfection results in a decreased formation of AOX. HYP is an effective disinfectant; therefore, it should be used at low temperatures and concentrations to reduce the amount of AOX. If possible, disinfection should be accomplished by the use of no chlorine-containing agents. By this means, negative influences of HYP on the quality of wine can also be avoided. Recommendations and perspectives  Our results indicate that HYP has a high potential to form AOX in effluents of viticulture. The predominant by-products are chloroform, dichloroacetic acid and trichloroacetaldehyde. In further research, wastewaters from a winery and the in- and outflows of two sewage treatment plants were sampled during vintage and analysed. These results will be discussed in a following paper.  相似文献   

11.
Over the past decade, several studies have reported trace levels of endocrine disrupting compounds, pharmaceuticals, and personal care products in surface waters, drinking water, and wastewater effluents. There has also been an increased concern about the ecological and human health impact of these contaminants, and their removal from water and wastewater has become a priority. Traditional treatment processes are limited in their ability to remove emerging contaminants from water, and there is a need for new technologies that are effective and feasible. This paper presents a review on recent research results on molecularly imprinted (MIP) and non-imprinted (NIP) polymers and evaluates their potential as a treatment method for the removal of emerging contaminants from water and wastewater. It also discusses the relative benefits and limitations of using MIP or NIP for water and wastewater treatment. MIP, and in particular NIP, offer promising applications for wastewater treatment, but their toxicity and possible health effects should be carefully studied before they are considered for drinking water treatment. More research is also required to determine how best to incorporate MIP and NIP in treatment plants.  相似文献   

12.
以长三角某典型河流型水源地源水为研究对象,设计了传统工艺及基于凹凸棒土处理单元的6种强化工艺,对各工艺及其处理单元应用于典型氯化消毒副产物(三卤甲烷和卤乙酸)及其前体物控制的技术和经济可行性进行了系统分析。结果表明,预O3+凹土强化混凝+O3-GAC强化的工艺对上述2种消毒副产物及其前体物的控制效果最佳;在传统工艺中单纯增加O3处理也能在一定程度上提高其对消毒副产物前体物的去除效果;KMnO4控制消毒副产物的效果一般,但KMnO4处理可强化后续单元对消毒副产物前体物的去除效果。各工艺处理出水中三卤甲烷和卤乙酸单项指标均能达标,但传统工艺和经凹土强化混凝+GAC强化的工艺出水三卤甲烷4种化合物的实测浓度与其各自限值的比值之和均大于1.0,不能满足水质要求,必须进行强化处理。凹土强化混凝单元在6种强化工艺条件下对三卤甲烷生成潜能(THMFP)和卤乙酸生成潜能(HAAFP)的去除率较传统混凝单元平均提高15.99%和4.92%;各强化工艺对THMFP和HAAFP的去除率较传统工艺均提高20%以上(除凹土强化混凝+GAC强化的工艺外),消毒副产物产生量降低40%以上,工艺成本降低20%以上。  相似文献   

13.
Chang EE  Chiang PC  Ko YW  Lan WH 《Chemosphere》2001,44(5):1231-1236
The molecular weight distribution and chemical composition of precursors and their relationship with disinfection by-products (DBPs) were investigated. Most of the organic matter responsible for the major DBP precursors in the Pan-Hsin water are small compounds with a molecular weight less than 1 kDa. The hydrophobic acids display the greatest ability to produce DBP. Therefore, effective removal of small molecules or hydrophobic acidic organics prior to disinfection process will significantly reduce the DBP concentration in the finished water. Although the coagulation process is effective in removing large organic precursors and the removal efficiencies of CHCl3 formation potential and organic carbon increase proportionally to the molecular weight of the precursors, the conventional treatment methods have limited efficiency in eliminating small precursors, which have high DBP formation potential.  相似文献   

14.
We investigated contamination by endocrine-disrupting chemicals in drinking water from 35 major Italian cities and five popular Italian brands of bottled mineral water. The quality of Italian drinking water was assessed by combing chemical analysis with bioassay to quantify specific estrogenic contaminants and to characterize the actual biological effect of the mixture of chemicals present in drinking water including the contribution of not targeted compounds. The selected contaminants were natural and synthetic steroid estrogens, alkylphenols and bisphenol A, linuron, triazine herbicides, and their metabolites. A specific analytical method was developed based on solid phase extraction of 1 L of water and concentration to 100 μL for quantification by electrospray ionization liquid chromatography tandem mass spectrometry, achieving quantification limits of 0.05–0.36 ng/L for herbicides and 0.64–7.70 ng/L for steroids and phenols. No steroid estrogens were detected in any of the samples, while bisphenol A and nonylphenols were detected in the ranges of 0.82–102.00 and 10.30–84.00 ng/L respectively. Herbicides and their degradation products, when present, were found from slightly above the quantification limits up to 49.91 ng/L, mainly from cities in northern Italy. Chemical analyses were complemented by the performance of a bioassay for the determination of the estrogenic activity in the extracts based on the transactivation of estrogen receptor α-transfected reporter HeLa-ERE-Luciferase-Neomycin cell line. Activity was generally low with maximum estrogenicity of 13.6 pg/L estradiol equivalents.  相似文献   

15.
饮用水中硝酸盐的脱除   总被引:1,自引:0,他引:1  
饮用水中硝酸盐氮的污染问题日趋严重,对人类的健康有多方面的危害.离子交换、反渗透、电渗、生物反硝化、化学和化学催化反硝化都可从水中脱除硝酸盐,但目前投入实用的只有离子交换、生物反硝化、反渗透三种工艺.这些脱硝方法各有优缺点.本文综述了饮用水脱硝的应用与研究的现状,并对其发展的趋势进行了简单的论述.  相似文献   

16.
Chlorination for drinking water forms various disinfection byproducts (DBPs) of trihalomethanes (THMs) and haloacetic acids (HAAs). Chlorination has been attributed to the destruction of activated aromatic sites of the natural organic matter (NOM) predominantly at electron rich sites. Experiments with Istanbul surface waters showed that the magnitude of the decrease in the ultraviolet (UV) absorbance at 272 nm (UV272) was an excellent indicator of destruction of these sites by chlorine. The main objective of the present study is to develop the differential UV272 absorbance (ΔUV272) related models for the prediction of the formation of THM, HAA, and their species in raw water samples from Terkos, Buyukcekmece, and Omerli lakes under different chlorination conditions. Significant factors affecting DBP formation in the raw waters were identified through numerical and graphical techniques. The R2 values of the models varied between 0.94 and 0.97, indicating excellent predictive ability for THM4 and HAA9 in the raw waters. The models were validated using additional data. The results of this study concluded that addition of ΔUV272 parameter into THM4 and HAA9 models make the prediction of these DBP compounds more precisely than those of DBP models developed in the past. A better understanding of these modeling systems will help the water treatment plant operators to minimize the DBP formation, providing a healthier and better drinking water quality as well as identifying strategies to improve water treatment and disinfection processes.  相似文献   

17.
Considering the important role that surface waters serve for drinking water production, it is important to know if these resources are under the impact of contaminants. Apart from environmental pollutants such as pesticides, compounds such as (xeno)estrogens have received al lot of research attention and several large monitoring campaigns have been carried out to assess estrogenic contamination in the aquatic environment. The introduction of novel in vitro bioassays enables researchers to study if – and to what extent – water bodies are under the impact of less-studied (synthetic) hormone active compounds. The aim of the present study was to carry out an assessment on the presence and extent of glucocorticogenic activity in Dutch surface waters that serve as sources for drinking water production. The results show glucocorticogenic activity in the range of <LOD – 2.4 ng dexamethasone equivalents L−1 (dex EQs) in four out of eight surface waters. An exploratory time-series study to obtain a more complete picture of the yearly average of fluctuating glucocorticogenic activities at two sample locations demonstrated glucocorticogenic activities ranging between <LOD – 2.7 ng dex EQs L−1. Although immediate human health effects are unlikely, the environmental presence of glucocorticogenic compounds in the ng L−1 range compels further environmental research and assessment.  相似文献   

18.
Estrogens are a class of micro-pollutants found in water at low concentrations (in the ng L−1 range), but often sufficient to exert estrogenic effects due to their high estrogenic potency. Disinfection of waters containing estrogens through oxidative processes has been shown to lead to the formation of disinfection byproducts, which may also be estrogenic. The present work investigates the formation of disinfection byproducts of 17β-estradiol (E2) and estrone (E1) in the treatment of water with ozone. Experiments have been carried out at two different concentrations of the estrogens in ground water (100 ng L−1 and 100 μg L−1) and at varying ozone dosages (0-30 mg L−1). Detection of the estrogens and their disinfection byproducts in the water samples has been performed by means of ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with a triple quadrupole (QqQ) and a quadrupole-time of flight (QqTOF) instrument. Both E2 and E1 have been found to form two main byproducts, with molecular mass (MM) 288 and 278 in the case of E2, and 286 and 276 in the case of E1, following presumably the same reaction pathways. The E2 byproduct with MM 288 has been identified as 10epsilon-17beta-dihydroxy-1,4-estradieno-3-one (DEO), in agreement with previously published results. The molecular structures and the formation pathways of the other three newly identified byproducts have been suggested. These byproducts have been found to be formed at both high and low concentrations of the estrogens and to be persistent even after application of high ozone dosages.  相似文献   

19.
Environmental Science and Pollution Research - The presence of toxic chlorinated compounds in drinking water, generated during the disinfection step in water treatment plants, is of great concern...  相似文献   

20.
Chu WH  Gao NY  Templeton MR  Yin DQ 《Chemosphere》2011,83(5):647-651
The formation of disinfection by-products (DBPs), including both nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products (C-DBPs), was investigated upon chlorination of water samples following two treatment processes: (i) coagulation-inclined plate sedimentation (IPS)-filtration and (ii) coagulation-dissolved air flotation (DAF)-filtration. The removal of algae, dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and UV254 by coagulation-DAF-filtration was superior to coagulation-IPS-filtration. On average, 53%, 53% and 31% of DOC, DON and UV254 were removed by coagulation-DAF-filtration process, which were higher than 47%, 31% and 27% of that by coagulation-IPS-filtration process. Additionally, coagulation-IPS-filtration performed less well at removing the low molecular weight organics than coagulation-DAF-filtration process. The concentrations of chloroform, dichloroacetamide (DCAcAm) and dichloroacetonitrile (DCAN) formed during chlorination after coagulation-DAF-filtration reached their maximum values of 13, 1.5 and 4.7 μg L−1, respectively, and were lower than those after coagulation-IPS-filtration with the maximum detected levels of 17, 2.9 and 6.3 μg L−1. However, the trichloronitromethane (TCNM) concentration after the two processes was similar, suggesting that DON may have less of a contribution to TCNM formation than DCAcAm and DCAN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号