首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Temporal trends of polyfluoroalkyl compounds (PFCs) were examined in grey seal (Halichoerus grypus) liver from the Baltic Sea over a period of 35 years (1974-2008). In total, 17 of 43 PFCs were found, including the perfluoroalkyl sulfonates (C4-C10 PFSAs), perfluorooctanesulfinate (PFOSi), long chain perfluoroalkyl carboxylates (C7-C14 PFCAs), and perfluoroalkyl sulfonamides (i.e., perfluorooctane sulfonamide (FOSA) and N-ethyl perfluorooctane sulfonamide (EtFOSA)), whereas saturated and unsaturated fluorotelomer carboxylates, shorter chain PFCAs and perfluoroalkyl phosphonic acids were not detected. Perfluorooctane sulfonate (PFOS) was the predominant compound (9.57-1444 ng g−1 wet weight (ww)), followed by perfluorononanoate (PFNA, 0.47-109 ng g−1 ww). C6-C8 PFSAs, PFOSi and C7-C13 PFCAs showed statistically significant increasing concentrations between 1974 and 1997, with a peak in 1997 and then decreased or levelled off (except for C12 and C13 PFCAs). FOSA had a different temporal trend with a maximum in 1989 followed by significant decreasing concentrations until 2008. Toxicological implications for grey seals are limited, but the maximal PFOS concentration found in this study was about 40 times lower than the predicted lowest observed effect concentrations (LOEC). The statistically significant decreasing concentrations or levelling off for several PFCs in the relative closed marine ecosystem of the Baltic Sea indicate a rapidly responding to reduced emissions to the marine environment. However, the high concentrations of PFOS and continuing increasing concentrations of the longer chain PFCAs (C12-C14) shows that further work on the reduction of environmental emissions of PFCs are necessary.  相似文献   

2.
Laboratory partitioning experiments were conducted to elucidate the sorption behaviour and partitioning of perfluoroalkyl compounds (PFCs). Three different sediment types were used and separately spiked with perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) at low environmentally realistic concentrations. PFOA, PFOS and PFOSA were mainly distributed in the dissolved phase at low suspended solid concentrations, indicating their long-range transport potential in the marine environment. In all cases, the equilibrium isotherms were linear and the organic carbon normalised partition coefficients (KOC) decreased in the following order: PFOSA (log KOC = 4.1 ± 0.35 cm3 g−1) > PFOS (3.7 ± 0.56 cm3 g−1) > PFOA (2.4 ± 0.12 cm3 g−1). The level of organic content had a significant influence on the partitioning. For the sediment with negligible organic content the density of the sediment became the most important factor influencing the partitioning. Ultimately, data on the partitioning of PFCs between aqueous media and suspended solids are essential for modelling their transport and environmental fate.  相似文献   

3.
This paper examines the fate of perfluorinated sulfonates (PFSAs) and carboxylic acids (PFCAs) in two water reclamation plants in Australia. Both facilities take treated water directly from WWTPs and treat it further to produce high quality recycled water. The first plant utilizes adsorption and filtration methods alongside ozonation, whilst the second uses membrane processes and advanced oxidation to produce purified recycled water. At both facilities perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) were the most frequently detected PFCs. Concentrations of PFOS and PFOA in influent (WWTP effluent) ranged up to 3.7 and 16 ng L−1 respectively, and were reduced to 0.7 and 12 ng L−1 in the finished water of the ozonation plant. Throughout this facility, concentrations of most of the detected perfluoroalkyl compounds (PFCs) remained relatively unchanged with each successive treatment step. PFOS was an exception to this, with some removal following coagulation and dissolved air flotation/sand filtration (DAFF). At the second plant, influent concentrations of PFOS and PFOA ranged up to 39 and 29 ng L−1. All PFCs present were removed from the finished water by reverse osmosis (RO) to concentrations below detection and reporting limits (0.4-1.5 ng L−1). At both plants the observed concentrations were in the low parts per trillion range, well below provisional health based drinking water guidelines suggested for PFOS and PFOA.  相似文献   

4.
Nguyen VT  Reinhard M  Karina GY 《Chemosphere》2011,82(9):1277-1285
Perfluorochemicals (PFCs) are used in numerous applications, mainly as surfactants, and occur ubiquitously in the environment as complex mixtures. This study was undertaken to characterize the occurrence and sources of commonly detected PFC compounds in surface waters of the Marina catchment, a watershed that drains an urbanized section of Singapore. Of the 19 target PFCs, 13 were detected with perfluorooctanoic acid (PFOA) (5-31 ng L−1) and perfluorooctane sulfonate (PFOS) (1-156 ng L−1) being the dominant components. Other compounds detected included perfluoroalkyl carboxylates (C7-C12) and perfluoroalkyl sulfonates (C6 and C8). Sulfonamide compounds detected 2-(N-ethylperfluorooctanesulfonamido) acetic acid (N-EtFOSAA), 2-(N-methylperfluorooctanesulfonamido) acetic acid (N-MeFOSAA), perfluorooctanesulfonamido acetic acid (FOSAA) and perfluorooctanesulfonamide (FOSA) were putative transformation products of N-EtFOSE and N-MeFOSE, the N-ethylated and N-methylated ethyl alcohol derivatives, respectively. Surface water concentrations were generally higher during dry weather than during storm water flow: the median concentrations of total PFCs in dry and wet weather were 57 and 138 ng L−1 compared to 42 and 79 ng L−1, respectively, at Stamford and Alexandra canal, suggesting the presence of a continuous source(s) which is subject to dilution during storm events. In rain water, median concentrations were 6.4 ng L−1, suggesting rain contributed from 12-25% to the total PFC load for non-point source sites. The longitudinal concentration profile along one of the canals revealed a point source of sulfonated PFCs (PFOS), believed to originate from aqueous film-forming foam (AFFF). Sources were characterized using principal component analysis (PCA) and by plotting PFHxS/PFOA against PFOS/PFOA. Typical surface waters exhibit PFOS/PFOA and PFHxS/PFOA ratios below 0.9 and 0.5, respectively. PCA plots reveal waters impacted by “non-typical” PFC sources in Alexandra canal.  相似文献   

5.
Perfluorinated compounds (PFCs) were measured in zooplankton and five fish species collected from Gaobeidian Lake, which receives discharge from wastewater treatment plant (WWTP) in Beijing, China. The mean total PFCs in five fish were in the order: crucian carp > common carp > leather catfish > white semiknife carp > tilapia. Perfluorooctane sulfonate (PFOS) occurred at the greatest concentrations, with mean concentrations ranging from 5.74 to 64.2 ng/ml serum. Perfluorodecanoic acid (PFDA) was the second dominant PFC in fish samples except for common carp in which perfluorooctane sulfonamide (PFOSA) was dominant. A positive linear relationship (r2 = 0.85, p < 0.05) was observed between ln PFOS concentrations (ln ng/ml) and trophic level (based on δ15N) if tilapia was excluded. The risk assessment showed that PFOS might not pose an immediate risk to fish in Gaobeidian Lake.  相似文献   

6.
This paper reports on the partitioning behaviour of 15 perfluorinated compounds (PFCs), including C4-C10 sulfonates and C5-C14 carboxylic acids, between water, sediment and fish (European chub, Leuciscus cephalus) in the Orge River (nearby Paris). Total PFC levels were 73.0 ± 3.0 ng L−1 in water and 8.4 ± 0.5 ng g−1 in sediment. They were in the range 43.1-4997.2 ng g−1 in fish, in which PFC tissue distribution followed the order plasma > liver > gills > gonads > muscle. Sediment-water distribution coefficients (log Kd) and bioaccumulation factors (log BAF) were in the range 0.8-4.3 and 0.9-6.7, respectively. Both distribution coefficients positively correlated with perfluoroalkyl chain length. Field-based biota-sediment accumulation factors (BSAFs) are also reported, for the first time for PFCs other than perfluorooctane sulfonate. log BSAF ranged between −1.3 and 1.5 and was negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids.  相似文献   

7.
In the eggs and developing chick livers in the two wild bird species, great cormorant and herring gull, the concentrations of a range of 15 perfluoroalkyl acids (PFAAs) were determined. Eggs of the two species were collected from Lake Vänern, Sweden, and analysed either as undeveloped egg (whole egg or separated into yolk and albumen) or incubated until start of the hatching process when the chick liver was removed and analysed. High levels of PFAAs were found in all matrixes except albumen. The predominant PFAA was perfluorooctane sulfonate (PFOS), which was found in the μg/g wet weight (ww) range in some samples of cormorant whole egg, yolk and liver and herring gull egg yolk and liver. The average concentration in yolk was 1,506 ng/g ww in cormorant and 589 ng/g ww in herring gull. The average liver concentrations of PFOS were 583 ng/g ww in cormorant and 508 ng/g ww in herring gull. At these concentrations, biochemical effects in the developing embryo or effects on embryo survival cannot be ruled out. For perfluoroalkyl carboxylates (PFCAs), the liver/egg and liver/yolk concentration ratios increased with PFCA chain length in cormorant but not in herring gull, indicating that chain length could possibly affect egg-to-liver transfer of PFCAs and that species differences may exist.  相似文献   

8.
This study focused on the occurrence of long-chain perfluorinated chemicals (PFCs) in anaerobically stabilized sewage sludges from 20 municipal WWTPs using current and historic samples to evaluate the levels of PFCs and to identify the relative importance of commercial and industrial sources. A quantitative analytical method was developed based on solvent extraction of the analytes and a LC-MS/MS system. For total perfluoralkyl carboxylates (PFCAs), the concentrations ranged from 14 to 50 μg/kg dry matter. Concentrations of perfluorooctane sulfonic acid (PFOS) ranged from 15 to 600 μg/kg dry matter. In three WWTPs, the PFOS levels were six to nine times higher than the average values measured in the other plants. These elevated PFOS concentrations did not correlate with higher levels of PFCAs, indicating specific additional local sources for PFOS at these WWTPs. Average concentrations in selected samples from the years 1993, 2002, and 2008 did not change significantly.  相似文献   

9.
This study provided the first spatial distribution of perfluorinated compounds (PFCs) in Hanjiang River in Wuhan, China (HR). Surface water samples, collected from 23 sites in HR were analyzed for eight PFCs. The total concentrations of PFCs ranged from 8.90 to 568 ng L−1, while perfluoropentanoic acid (PFOA, <LOQ − 256 ng L−1) and perfluorooctane sulfonate (PFOS, <LOQ − 88.9 ng L−1) dominated. All data were found to be normally distributed in the river. Similar spatial distribution tendencies were found among perfluorocarboxylates (PFCAs) and significant correlations were observed among PFCAs, while no significant correlations were found between PFOS and PFCAs. The distributions of PFCs were highly influenced by the industrial discharge and urban activities. The flux of PFCs from HR to the Yangtze River was estimated in the range of 16.9–127 kg yr−1. More than a half of the samples studied could not meet the drinking water standards and avian wildlife values, suggesting further studies of characterizing PFCs and their potential risk to human were needed.  相似文献   

10.
Yang L  Zhu L  Liu Z 《Chemosphere》2011,83(6):806-814
The concentrations of four perfluorinated sulfonate acids (PFSAs) and 10 perfluorinated carboxylate acids (PFCAs) were measured in water and sediment samples from Liao River and Taihu Lake, China. In the water samples from Taihu Lake, PFOA and PFOS were the most detected perfluorinated compounds (PFCs); in Liao River, PFHxS was the predominant PFC followed by PFOA, while PFOS was only detected in two of the samples. This suggests that different PFC products are used in the two regions. PFOS and PFOA in both watersheds are at similar level as in the rivers of Japan, but significantly lower than in Great Lakes. The contributions of PFOS and long chain PFCAs in sediments were much higher than in water samples of both watersheds, indicating preferential partition of these PFCs in sediment. The concentrations of PFOS and PFOA were three orders of magnitude of lower than that of polycyclic aromatic hydrocarbons in the same sediments. The average sediment-water partition coefficients (log Koc) of PFHxS, PFOS and PFOA were determined to be 2.16, 2.88 and 2.28 respectively.  相似文献   

11.
Northern fulmars from two breeding colonies in the Canadian Arctic, Cape Vera and Prince Leopold Island, were analyzed for organochlorine pesticides, PCBs, perfluorinated compounds (PFCs) and total mercury (Hg). Hepatic concentrations of organochlorines and Hg were highest in the male fulmars from Cape Vera. Perfluorooctane sulfonate (PFOS) concentrations did not vary significantly between sexes or colonies. However, concentrations of the perfluorinated carboxylates (PFCAs) were higher in fulmars from Cape Vera than Prince Leopold Island. The C11-C15 PFCAs averaged 90% of the PFCA profile at both colonies. Polychorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and non-ortho PCBs (NO-PCBs) were measured only in birds from Prince Leopold Island. Concentrations of PCDDs, PCDFs, NO-PCBs and Toxic Equivalents (TEQs) did not differ significantly between sexes. ΣTEQ was comprised mainly of ΣTEQPCDF. Concentrations of Hg and the persistent halogenated compounds reported in this study were below published toxicological threshold values for wild birds.  相似文献   

12.
This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 μg/L).  相似文献   

13.
Transport and fate of perfluoro- and polyfluoroalkyl substances (PFASs) in an urban water body that receives mainly urban runoff was investigated. Water, suspended solids, and sediment samples were collected during the monsoon (wet) and inter-monsoon (dry) season at different sites and depths. Samples were analyzed for C7 to C12 perfluoroalkyl carboxylate homologues (PFCAs) (PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA), perfluorohexane, perfluorooctane, and 6:2-fluorotelomer sulfonate (PFHxS, PFOS, and 6:2FtS, respectively), perfluorooctane sulfonamide (FOSA), N-ethyl FOSA (sulfluramid), N-ethyl sulfonamidoethanol (N-EtFOSE), and N-methyl and N-ethyl sulfonamidoacetic acid (N-EtFOSAA and N-MeFOSAA, respectively). Concentrations in wet samples were only slightly higher. The sum total PFAS (ΣPFAS) concentrations dissolved in the aqueous phase and sorbed to suspended solids (SS) ranged from 107 to 253 ng/L and 11 to 158 ng/L, respectively. PFOA, PFOS, PFNA, PFHxS, and PFDA contributed most (approximately 90 %) to the dissolved ΣPFASs. N-EtFOSA dominated the particulate PFAS burden in wet samples. K D values of PFOA and PFOS calculated from paired SS and water concentrations varied widely (1.4 to 13.7 and 1.9 to 98.9 for PFOA and PFOS, respectively). Field derived K D was significantly higher than laboratory K D suggesting hydrophobic PFASs sorbed to SS resist desorption. The ΣPFAS concentrations in the top sedimentary layer ranged from 8 to 42 μg/kg and indicated preferential accumulation of the strongly sorbing long-chain PFASs. The occurrence of the metabolites N-MeFOSAA, N-EtFOSAA and FOSA in the water column and sediments may have resulted from biological or photochemical transformations of perfluorooctane sulfonamide precursors while the absence of FOSA, N-EtFOSA and 6:2FtS in sediments was consistent with biotransformation.  相似文献   

14.
The concentrations of 10 PFCs (perfluorinated compounds: PFOS, PFHxS, PFOSA, N-EtFOSA, PFDoDA, PFUnDA, PFDA, PFNA, PFOA, and PFHpA) were measured in liver samples of Indo-Pacific humpback dolphins (Sousa chinensis) (n = 10) and finless porpoises (Neophocaena phocaenoides) (n = 10) stranded in Hong Kong between 2003 and 2007. PFOS was the dominant PFC in the tissues at concentrations ranging at 26-693 ng/g ww in dolphins and 51.3-262 ng/g ww in porpoises. A newly developed combustion ion chromatography for fluorine was applied to measure total fluorine (TF) and extractable organic fluorine (EOF) in these liver samples to understand PFC contamination using the concept of mass balance analysis. Comparisons between the amounts of known PFCs and EOF in the livers showed that a large proportion (∼70%) of the organic fluorine in both species is of unknown origin. These investigations are critical for a comprehensive assessment of the risks of these compounds to humans and other receptors.  相似文献   

15.
Temporal variations in concentrations of perfluorinated carboxylic acids (PFCAs) and sulfonic acids (PFSAs), including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) structural isomers, were examined in livers of pilot whale (Globicephala melas), ringed seal (Phoca hisida), minke whale (Balaenoptera acutorostrata), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), Atlantic white-sided dolphin (Lagenorhynchus acutus) and in muscle tissue of fin whales (Balaenoptera physalus). The sampling spanned over 20 years (1984-2009) and covered a large geographical area of the North Atlantic and West Greenland. Liver and muscle samples were homogenized, extracted with acetonitrile, cleaned up using hexane and solid phase extraction (SPE), and analyzed by liquid chromatography with negative electrospray tandem mass spectrometry (LC-MS/MS). In general, the levels of the long-chained PFCAs (C9-C12) increased whereas the levels of PFOS remained steady over the studied period. The PFOS isomer pattern in pilot whale liver was relatively constant over the sampling years. However, in ringed seals there seemed to be a decrease in linear PFOS (L-PFOS) with time, going from 91% in 1984 to 83% in 2006.  相似文献   

16.
An intensive campaign was conducted in September 2012 to collect surface water samples along the tributaries of the Pearl River in southern China. Thirteen perfluoroalkyl acids (PFAAs), including perfluorocarboxylates (PFCAs, C4–C11) and perfluorosulfonates (PFSAs, C4, C6–C8, and C10), were determined using high-performance liquid chromatography/negative electrospray ionization–tandem mass spectrometry (HPLC/(-)ESI–MS/MS). The concentrations of total PFAAs (ΣPFAAs) ranged from 3.0 to 52 ng L−1, with an average of 19 ± 12 ng L−1. The highest concentrations of ΣPFAAs were detected in the surface water of the Dong Jiang tributary (17–52 ng L−1), followed by the main stream (13–26 ng L−1) and the Sha Wan stream (3.0–4.5 ng L−1). Perfluorooctanoate (PFOA), perfluorobutane sulfonate (PFBS), and perfluorooctane sulfonate (PFOS) were the three most abundant PFAAs and on average accounted for 20%, 24%, and 19% of ΣPFAAs, respectively. PFBS was the most abundant PFAA in the Dong Jiang tributary, and PFOA was the highest PFAA in the samples from the main stream of the Pearl River. A correlation was found between PFBS and PFOA, which suggests that both of these PFAAs originate from common source(s) in the region. Nevertheless, the slope of PFBS/PFOA was different in the different tributaries sampled, which indicates a spatial difference in the source profiles of the PFAAs.  相似文献   

17.
Li F  Sun H  Hao Z  He N  Zhao L  Zhang T  Sun T 《Chemosphere》2011,84(2):265-271
In this study, nine perfluorinated compounds (PFCs) were investigated in water and sediment of Haihe River (HR) and Dagu Drainage Canal (DDC), Tianjin, China. The total PFCs in water samples from DDC (40-174 ng L−1) was much greater than those from HR (12-74 ng L−1). PFC contamination was severe at lower reaches of HR due to industry activities, while high PFCs were found in the middle of DDC due to the effluents from wastewater treatment plants. Perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were the predominant PFCs in aqueous phase. The total PFCs in sediments from DDC (1.6-7.7 ng g−1 dry weight) were lower as compared to HR (7.1-16 ng g−1), maybe due to the dredging of sediment in DDC conducted recently. PFOS was the major PFC in HR sediments followed by PFOA; while PFHxA was the major PFC in DDC sediments. Organic carbon calibrated sediment-water distribution coefficients (KOC) were calculated for HR. The Log KOC ranged from 3.3 to 4.4 for C7-C11 perfluorinated carboxylic acids, increasing by 0.1-0.6 log units with each additional CF2 moiety. The log KOC for 8:2 fluorotelomer unsaturated acid was reported for the first time with a mean value of 4.0. The log Koc of PFOS was higher than perfluoronanoic acid by 0.8 log units.  相似文献   

18.
Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands   总被引:1,自引:1,他引:0  
Diet and drinking water are suggested to be major exposure pathways for perfluoroalkyl substances (PFASs). In this study, food items and water from Faroe Islands sampled in 2011/2012 were analyzed for 11 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkane sulfonic acids (PFSAs). The food samples included milk, yoghurt, crème fraiche, potatoes, fish, and fish feed, and the water samples included surface water and purified drinking water. In total, nine PFCAs and four PFSAs were detected. Generally, the levels of PFAS were in the lower picogram per gram range. Perfluorobutanoic acid was a major contributor to the total PFASs concentration in water samples and had a mean concentration of 750 pg/L. Perfluoroundecanoic acid (PFUnDA) was predominating in milk and wild fish with mean concentrations of 170 pg/g. Perfluorooctane sulfonic acid (PFOS) was most frequently detected in food items followed by PFUnDA, perfluorononanoic acid, and perfluorooctanoic acid (PFOA). Levels of PFUnDA and PFOA exceeded those of PFOS in milk and fish samples. Prevalence of long-chain PFCAs in Faroese food items and water is confirming earlier observations of their increase in Arctic biota. Predominance of short-chain and long-chain homologues indicates exposure from PFOS and PFOA replacement compounds.  相似文献   

19.
Huset CA  Barlaz MA  Barofsky DF  Field JA 《Chemosphere》2011,82(10):1380-1386
Twenty-four fluorochemicals were quantified in landfill leachates recovered from municipal refuse using an analytical method based on solid-phase extraction, dispersive-carbon sorbent cleanup, and liquid chromatography/tandem mass spectrometry. The method was applied to six landfill leachates from four locations in the US as well as to a leachate generated by a laboratory bioreactor containing residential refuse. All seven leachates had the common characteristic that short-chain (C4-C7) carboxylates or sulfonates were greater in abundance than their respective longer-chain homologs (?C8). Perfluoroalkyl carboxylates were the most abundant (67 ± 4% on a nanomolar (nM) basis) fluorochemicals measured in leachates; concentrations of individual carboxylates reaching levels up to 2800 ng L−1. Perfluoroalkyl sulfonates were the next most abundant class (22 ± 2%) on a nM basis; their abundances in each of the seven leachates derived from municipal refuse were greater for the shorter-chain homologs (C4 and C6) compared to longer-chain homologs (C8 and C10). Perfluorobutane sulfonate concentrations were as high as 2300 ng L−1. Sulfonamide derivatives composed 8 ± 2.1% (nM basis) of the fluorochemicals in landfill leachates with methyl (C4 and C8) and ethyl (C8) sulfonamide acetic acids being the most abundant. Fluorotelomer sulfonates (6:2 and 8:2) composed 2.4 ± 1.3% (nM basis) of the fluorochemicals detected and were present in all leachates.  相似文献   

20.
Liu YP  Li JG  Zhao YF  Wen S  Huang FF  Wu YN 《Chemosphere》2011,83(2):168-174
The levels of polybrominated diphenyl ethers (PBDEs) and indicator polychlorinated biphenyls (PCBs) were determined in marine fish from four areas of China (South China Sea, Bohai Sea, East China Sea, and Yellow Sea) using GC/NCI-MS and GC/ITMS, respectively. Total concentrations of eight PBDEs (BDE-28, 47, 99, 100, 153, 154, 183 and 209) in all samples ranged from 0.3 ng g−1 ww (wet weight) to 700 ng g−1 ww, with median and mean values of 85 ng g−1 ww and 200 ng g−1 ww, respectively. BDE-209 and BDE-47 were the major congeners in all samples, contributing 54% and 19% to the total concentration, respectively. The sum of seven indicator PCB levels (CB-28, 52, 101, 118, 138, 153, and 180) ranged from 0.3 ng g−1 ww to 3.1 μg g−1 ww, with median and mean values of 6.4 ng g−1 ww and 398 ng g−1 ww, respectively. High contributions of CB-138 (32%) and CB-153 (25%) were found in all samples. In general, pollutants measured in this study were at high levels when compared with previous studies from other regions in the world. The relative abundance of BDE-209 may suggest that deca-BDE sources existed in studied area. And principal component analysis (PCA) showed that there were other PBDE sources in Yellow Sea. The pattern and PCA showed that PCB pollutions came from similar sources in the studied areas. In addition, concentrations of ∑7PBDEs (u/209) were strongly correlated with those of ∑7PCBs in all fish (r = 0.907, n = 44).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号