首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Purpose

The discharge of colored effluents from industries is an important environmental issue and it is indispensable to remove the dyes before the water gets back to the rivers. The magnetic adsorbents present the advantage of being easily separated from the aqueous system after adsorption by positioning an external magnetic field.

Methods

Magnetic N-lauryl chitosan (L-Cht/??-Fe2O3) particles were prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and vibrating sample magnetometry. Remazol Red 198 (RR198) was used as a reactive dye model for adsorption on L-Cht/??-Fe2O3. The adsorption isotherms were performed at 25°C, 35°C, 45°C, and 55°C and the process was optimized using a 23 factorial design (analyzed factors: pH, ionic strength, and temperature). The desorption and regeneration studies were performed in a three times cycle.

Results

The characterization of the material indicated that the magnetic particles were introduced into the polymeric matrix. The pseudo-second order was the best model for explaining the kinetics and the Langmuir?CFreundlich was the best-fitted isotherm model. At room temperature, the maximum adsorption capacity was 267?mg?g?1. The material can be reused, but with a decrease in the amount of adsorbed dye.

Conclusions

L-Cht/??-Fe2O3 is a promising material to remove RR198 and probably other similar reactive dyes from aqueous effluents.  相似文献   

2.

Introduction

In this work, we report in situ studies of UV photoelectrocatalytic discoloration of a dye (indigo carmine) by a TiO2 thin film in a microreactor to demonstrate the driving force of the applied electrode potential and the dye flow rate toward dye discoloration kinetics.

Methods

TiO2 65-nm-thick thin films were deposited by PVD magnetron sputtering technique on a conducting glass substrate of fluorinated tin oxide. A microreactor to measure the discoloration rate, the electrode potential, and the photocurrent in situ, was developed. The dye solutions, before and after measurements in the microreactor, were analyzed by Raman spectroscopy.

Results

The annealed TiO2 thin films had anatase structure with preferential orientation (101). The discoloration rate of the dye increased with the applied potential to TiO2 electrode. Further, acceleration of the photocatalytic reaction was achieved by utilizing dye flow recirculation to the microreactor. In both cases the photoelectrochemical/photocatalytic discoloration kinetics of the dye follows the Langmuir?CHinshelwood model, with first-order kinetics.

Conclusions

The feasibility of dye discoloration on TiO2 thin film electrodes, prepared by magnetron sputtering using a flow microreactor system, has been clearly demonstrated. The discoloration rate is enhanced by applying a positive potential (E AP) and/or increasing the flow rate. The fastest discoloration and shortest irradiation time (50?min) produced 80% discoloration with an external anodic potential of 0.931?V and a flow rate of 12.2?mL?min?1.  相似文献   

3.

Purpose

Biodegradation and biodecolorization of Drimarene blue K2RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system.

Method

Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH?5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500?mg?l?1) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24?C72?h. Total run time for reactor operation was 17?days.

Results

The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg?l?1 initial dye concentration and HRT of 24?h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC?CMS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K2RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye.

Conclusion

The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.  相似文献   

4.

Purpose

Chitosan with nylon 6 membranes was evaluated as adsorbents to remove copper and cadmium ions from synthetic industrial wastewater.

Methods

Chitosan and nylon 6 with glutaraldehyde blend ratio with (1:1+Glu, 1:2+Glu, and 2:1+Glu) have been prepared and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. Characterization of the synthesized membrane has been done with FTIR, XRD, TGA/DTA, DSC, and SEM. Chemical parameters for quantities of adsorption of heavy metal contamination have been done and the kinetics of adsorption has also been carried out.

Results

The optimal pH for the removal of Cd(II) and Cu(II) using chitosan with nylon 6. Maximum removal of the metals was observed at pH 5 for both the metals. The effect of adsorbent dose also has a pronounced effect on the percentage of removal of the metals. Maximum removal of both the metals was observed at 5 g/100 ml of the adsorbent.

Conclusion

Copper and cadmium recovery is parallel at all time. The percentage of removal of copper increased with increase in the pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu2+ ions on chitosan increased rapidly with increasing contact time from 0 to 360 min and then reaches equilibrium after 360 min; the equilibrium constant for copper and cadmium ions is more or less the same for the adsorption reaction.  相似文献   

5.

Purpose

The aim of this work was to improve the ability of electro-Fenton technique for the remediation of wastewater contaminated with synthetic dyes using a model azo dye such as Azure B.

Methods

Batch experiments were conducted to study the effects of main parameters, such as dye concentration, electrode surface area, treatment time, and voltage. In this study, central composite face-centered experimental design matrix and response surface methodology were applied to design the experiments and evaluate the interactive effects of the four studied parameters. A total of 30 experimental runs were set, and the kinetic data were analyzed using first- and second-order models.

Results

The experimental data fitted to the empirical second-order model of a suitable degree for the maximum decolorization of Azure B by electro-Fenton treatment. ANOVA analysis showed high coefficient of determination value (R 2?=?0.9835) and reasonable second-order regression prediction. Pareto analysis suggests that the variables, time, and voltage produce the largest effect on the decolorization rate.

Conclusion

Optimum conditions suggested by the second-order polynomial regression model for attaining maximum decolorization were dye concentration 4.83?mg/L, electrode surface area 15?cm2, voltage 14.19?V, and treatment time of 34.58?min.  相似文献   

6.

Background

Polyvinyl alcohol (PVA) has been widely used as sizing agents in textile and manufacturing industry, and it is a refractory compound with low biodegradability.

Objective

The objective of this paper was to treat the PVA-containing wastewater using gamma irradiation as a pretreatment strategy to improve its biodegradability and to determine the roles of different kinds of radical species played during pretreatment.

Methods

Gamma radiation was carried out in a 60Cobalt source station, PVA concentration was analyzed by using a visible spectrophotometer and specific oxygen uptake rate (SOUR, milligram of O2 per gram of mixed liquor volatile suspended solids (MLVSS) per hour) was measured by a microrespirometer.

Results

The results showed that the biodegradability of PVA-containing wastewater with low initial concentration (e.g., 327.8?mg/l) could be improved greatly with increasing irradiation dose. However, PVA gel formation was observed at higher initial PVA concentration (e.g., 3,341.6?mg/l) and higher irradiation dose, which inhibited PVA degradation by aerobic microorganisms. However, the formed gel could be separated by microfiltration, which led to more than 90% total organic carbon (TOC) removal.

Conclusion

Ionizing radiation could be used as a pretreatment technology for PVA-containing wastewater, and its combination with biological process is feasible.  相似文献   

7.

Background

PM10 aerosol samples were simultaneously collected at two urban and one urban background sites in Fuzhou city during two sampling campaigns in summer and winter. PM10 mass concentrations and chemical compositions were determined.

Methods

Water-soluble inorganic ions (Cl?, NO 3 ? , SO 4 2? , NH 4 + , K+, Na+, Ca2+, and Mg2+), carbonaceous species (elemental carbon and organic carbon), and elements (Al, Si, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, and Pb) were detected using ion chromatography, thermal/optical reflectance, and proton-induced X-ray emission methods, respectively.

Results

PM10 mass concentrations, as well as most of the chemical components, were significantly increased from urban background to urban sites, which were due to enhanced anthropogenic activities in urban areas. Elements, carbonaceous species, and most of the ions were more uniformly distributed at different types of sites in winter, whereas secondary ion SO 4 2? , NO 3 ? , and NH 4 + showed more evident urban-background contrast in this season. The chemical mass closure indicated that mineral dust, organic matters, and sulfate were the most abundant components in PM10. The sum of individually measured components accounted for 86.9?C97.7% of the total measured PM10 concentration, and the discrepancy was larger in urban area than in urban background area.

Conclusion

According to the principal component analysis?Cmultivariate linear regression model, mineral dust, secondary inorganic ions, sea salt, and motor vehicle were mainly responsible for the PM10 particles in Fuzhou atmosphere, and contributed 19.9%, 53.3%, 21.3%, and 5.5% of PM10, respectively.  相似文献   

8.

Purpose

Bacterial community structure and the chemical components in aerosols caused by rotating brushes in an Orbal oxidation ditch were assessed in a Beijing municipal wastewater treatment plant.

Methods

Air samples were collected at different distances from the aerosol-generating rotating brushes. Molecular culture-independent methods were used to characterize the community structure of the airborne bacteria in each sample regardless of cell culturability. A clone library of 16S rDNA directly amplified from air DNA of each sample was constructed and sequenced to analyze the community composition and diversity. Insoluble particles and water-soluble ions emitted with microorganisms in aerosols were analysis by a scanning electron microscope together with energy dispersive X-ray spectroscopy and ion chromatogram analyzer.

Results

In total, most of the identified bacteria were Proteobacteria. The majority of sequences near the rotating brushes (the main source of the bioaerosols) were Proteobacteria (62.97 %) with ??-(18.52 %) and ??-(44.45?%) subgroups and Bacteroidetes (29.63 %). Complex patterns were observed for each sampling location, suggesting a highly diverse community structure, comparable to that found in water in the Orbal oxidation ditch. Accompany with microorganisms, 46.36???g/m3 of SO 4 2? , 29.35???g/m3 of Cl?, 21.51???g/m3 of NO 3 ? , 19.76???g/m3 of NH 4 + , 11.42???g/m3 of PO 4 3? , 6.18???g/m3 of NO 2 ? , and elements of Mg, Cl, K, Na, Fe, S, and P were detected from the air near the aerosols source.

Conclusions

Differences in the structure of the bacterial communities and chemical components in the aerosols observed between sampling sites indicated important site-related variability. The composition of microorganisms in water was one of the most important sources of bacterial communities in bioaerosols. Chemical components in bioaerosols may provide a media for airborne microorganism attachment, as well as a suitable microenvironment for their growth and survival in the air. This study will be benefit for the formulation of pollution standards, especially for aerosols, that take into account plant workers?? health.  相似文献   

9.

Introduction

In this study, UV/Oxone/Co2+ oxidation process was applied to degradation of ofloxacin (OFL) in the presence of Co2+ as the catalytic and Oxone as the oxidant. The operation parameters including pH, temperature, dosages of reagents, and reaction time were studied in detail.

Results

The results showed that the optimum conditions for the UV/Oxone/Co2+ processes were determined as follows: temperature?=?25°C, pH?=?5.0, [Oxone]?=?0.6?mmol/L, [Oxone]/[Co2+]?=?1,000, and reaction time?=?60?min. Under these conditions, 100% of the OFL degraded. The kinetics was also studied, and degradation of OFL by the UV/Oxone/Co2+ process could be described by first-order kinetics.

Conclusions

Mineralization of the process was investigated by measuring the total organic carbon (TOC), and the TOC decreased by 87.0% after 60?min. This process could be used as a pretreatment method for wastewater containing ofloxacin.  相似文献   

10.

Introduction

Titanium dioxide (TiO2) nanoparticle powders have been extensively studied to quickly photodegrade some organic pollutants; however, the effect of the particle size of TiO2 nanoparticle aggregates on degradation remains unclear because microscale aggregates form once the nanoparticle powders enter into water.

Methods

The degradation of azo dye by different particle sizes of TiO2 nanoparticle aggregates controlled by NaCl concentrations was investigated to evaluate the particle size effect. Removal reactions of reactive black 5 (RB5) with TiO2 nanoparticles followed pseudo-first-order kinetics.

Results

The increase of TiO2 dosage from 40 to 70?mg/L enhanced the degradation. At doses around 100?mg/L TiO2, degradation rates decreased which could be the result of poor UV light transmittance at high-particle concentrations. At average particle sizes of TiO2 nanopowders less than around 500?nm, the degradation rates increased with decreasing particle size. As the average particle size exceeded 500?nm, the degradation rates were not significantly changed.

Conclusions

For the complete degradation experiments, the mineralization rates of total organic carbon disappearance are generally following the RB5 decolorization kinetic trend. These findings can facilitate the application of TiO2 nanoparticles to the design of photodegradation treatments for wastewater.  相似文献   

11.

Purpose

Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. The purpose of this work is to synthesize α-Fe2O3 nanofibers for potential applications in removal and recovery of noxious Cr(VI) from wastewater.

Methods

α-Fe2O3 nanofibers were synthesized via a simple hydrothermal route followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. Batch adsorption experiments were conducted, and Fourier transform infrared spectra were recorded before and after adsorption to investigate the Cr(VI) removal performance and adsorption mechanism. Langmuir and Freundlich modes were employed to analyze the adsorption behavior of Cr(VI) on the α-Fe2O3 nanofibers.

Results

Very thin and porous α-Fe2O3 nanofibers have been successfully synthesized for investigation of Cr(VI) removal capability from synthetic wastewater. Batch experiments revealed that the as-prepared α-Fe2O3 nanofibers exhibited excellent Cr(VI) removal performance with a maximum adsorption capacity of 16.17 mg g?1. Furthermore, the adsorption capacity almost kept unchanged after recycling and reusing. The Cr(VI) adsorption process was found to follow the pseudo-second-order kinetics model, and the corresponding thermodynamic parameters ΔG°, ΔH°, and ΔS° at 298 K were calculated to be ?26.60 kJ?mol?1, ?3.32 kJ?mol?1, and 78.12 J?mol?1 K?1, respectively.

Conclusions

The as-prepared α-Fe2O3 nanofibers can be utilized as efficient low-cost nano-absorbents for removal and recovery of Cr(VI) from wastewater.  相似文献   

12.

Introduction

The aims of the present study are to investigate the effects of Ce3+ on the growth and some antioxidant metabolisms in rice seedlings (Oryza sativa L. cv Shengdao 16).

Materials and methods

The rice was treated with 0, 0.05, 0.1, 0.5, 1.0, and 1.5?mM Ce3+, respectively. The growth index of rice was measured. The chlorophyll content; catalase, superoxide dismutase, and peroxidase activities; and the level of hydrogen peroxide (H2O2), superoxide anion (O 2 ·? ), and malondialdehyde were assayed. The accumulation of Ce3+ and the uptake of mineral nutrition elements were analyzed with ICP-SF-MS.

Results and discussion

Hormetic effects of Ce3+ on the growth and some antioxidant metabolisms were found in the roots and shoots of rice. The roots can accumulate a much higher content of Ce3+ than shoots and Ce3+ mainly located in the cell wall of roots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments, which indicated that Ce3+ affected the nutritional status of roots and shoots and further affected the growth of rice.

Conclusion

The appropriate amount of Ce3+ improved the defense system and growth of rice. The roots can accumulate a much higher content of Ce3+ than shoots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments.  相似文献   

13.

Purpose

With the aim of enhanced degradation of azo dye alizarin yellow R (AY) and further removal of the low-strength recalcitrant matter (LsRM) of the secondary effluent as much as possible, our research focused on the combination of aerobic bio-contact oxidation (ABO) with iron/carbon microelectrolysis (ICME) process.

Materials and methods

The combined ABO (with effective volume of 2.4?l) and ICME (with effectively volume of 0.4?l) process were studied with relatively short hydraulic retention time (HRT) of 4 or 6?h.

Results

At the HRT of 6?h with the reflux ratio of 1 and 2, the AY degradation efficiency in the final effluent was >96.5%, and the total organic carbon (TOC) removal efficiency were 69.86% and 79.44%, respectively. At the HRT of 4?h and the reflux ratio of 2, TOC removal efficiency and AY degradation efficiency were 73.94% and 94.89%, respectively. The ICME process obviously enhanced the total AY removal and the generated micromolecule acids and aldehydes then that wastewater backflow to the ABO where they were further biodegraded.

Conclusion

The present research might provide the potential options for the advanced treatment azo dyes wastewater with short HRT and acceptable running costs.  相似文献   

14.

Background

The adsorption characteristics of Pb2+ ions from aqueous solutions onto calix[4]naphthalene have been investigated.

Method

Calix[4]naphthalene was prepared by the condensation of 1-naphthol and formaldehyde (1:2) in presence of hydrochloric acid at 80°C. The effect of various operation parameters, such as solution pH, initial metal ion concentration, contact time, and temperature, on the adsorption capacity of calix[4]naphthalene for Pb2+ have been investigated.

Result

Experimental results showed that the adsorption of Pb2+ ions increased with the increase in solution pH and temperature. Langmuir and Freundlich isotherms models were used to describe the adsorption behavior of Pb2+ by calix[4]naphthalene. Equilibrium data fitted well with the Langmuir isotherm model and the maximum adsorption capacity of calix[4]naphthalene for Pb2+ at 30°C was found to be 29.15 mg g?1. Kinetic studies indicated that the adsorption followed pseudo-second order model and the thermodynamic studies revealed that the adsorption process was spontaneous and endothermic in nature. The obtained results demonstrated that calix[4]naphthalene can be used as an effective adsorbent for Pb2+ ions removal from water.  相似文献   

15.

Background

The photocatalytic degradation of pyrene under UV (125?W Hg-Arc, 10.4?mW/cm2) irradiation of TiO2 aqueous suspension has been found to be highly improved with the dissolved transition metal ions like Cu2+, Fe3+, Ag+, and Au3+, etc. As the reduction potential of these metals lies below the conduction band (CB) position (?0.1?eV) of TiO2, the photoexcited electron transfer occurs more readily and reduces electron?Chole recombination rate. Therefore, it has a beneficial influence on the photocatalytic ability of TiO2 because of rapid Fermi energy equilibrium between the CB of TiO2 and its surface adsorbed metal ions.

Results and discussion

The Fermi level is referred to as the electrochemical potential and plays an important role in the band theory of solids. When metal and semiconductor are in contact, electron migration from photoirradiated semiconductor to the deposited metal occurs at the interface until two Fermi levels equilibrate and enhanced the photocatalytic activity of semiconductor photocatalyst. Ni2+ having more negative reduction potential (?0.25?eV) than the CB of TiO2 imparts negligible co-catalytic activity to TiO2 photoreaction. It also revealed that loading of Au3+ ions displayed higher degradation rate of pyrene than Au photodeposition. Furthermore, when the amount of dissolved Fe+3 and Au3+ ions gradually increases from 0.1 to 2?wt.%, the pyrene photodecomposition rate also become faster.  相似文献   

16.
Utilization of urban sewage sludge: Chinese perspectives   总被引:3,自引:0,他引:3  

Purpose

Urbanization and industrialization in China has resulted in a dramatic increase in the volume of wastewater and sewage sludge produced from wastewater treatment plants. Problems associated with sewage sludge have attracted increasing attention from the public and urban planners. How to manage sludge in an economically and environmentally acceptable manner is one of the critical issues that modern societies are facing.

Methods

Sludge treatment systems consist of thickening, dewatering, and several different alternative main treatments (anaerobic digestion, aerobic digestion, drying, composting, and incineration). Agricultural application, landfill, and incineration are the principal disposal methods for sewage sludge in China. However, sewage sludge disposal in the future should focus on resource recovery, reducing environmental impacts and saving economic costs.

Results

The reuse of biosolids in all scenarios can be environmentally beneficial and cost-effective. Anaerobic digestion followed by land application is the preferable options due to low economic and energy costs and material reuse.

Conclusion

It is necessary to formulate a standard suitable for the utilization of sewage sludge in China.  相似文献   

17.

Background, aim, scope

Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst.

Materials and methods

Ferrous sulfate (FeSO4·7H2O), sulfuric acid (36?N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50?cm and diameter 6?cm, were fabricated with PVC while one reactor was packed with MAC of mass 150?g and other without MAC served as control.

Results and discussion

The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89?kJ/mol, respectively. The thermodynamic parameters ??G, ??H, and ??S were calculated for the oxidation processes using Van??t Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV?Cvisible spectroscopy, and cyclic voltammetry.

Conclusions

The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time?C4?h, and H2O2/FeSO4·7H2O in the molar ratio of 2:1.  相似文献   

18.

Introduction

Trends in precipitation pH and conductivity during 1992?C2009, and in ionic compositions from January 2007 to June 2009, are reported from Lushan Mountain, one of the highest mountains in mid-east China. Annual mean pH was in the range of 4.35?C5.01 and showed a statistically very significant (P?P?Results and discussions Over the period of study, Lushan Mountain received more rainfall in spring and summer. The pH values varied seasonally with winter minima. The winter multiyear seasonal mean pH was 4.35. The corresponding summer value was 4.88. SO 4 2? and NO 3 ? were the main anions, and NH 4 + and Ca2+ the main cations. The anion to cation ratio was 0.8?C1.0, and that of [SO 4 2? ] to [NO 3 ? ] was 2.4-3.0, much lower than that of the 1980s. However, sulfuric acid was still the main acid present. The ratio of [NH 4 + ] to [Ca2+] was about 1.0, suggesting that these two alkaline substances provided close acid neutralizing capacity. The ratio of [Cl?] to [Na+] was about 0.67, somewhat lower than that of natural precipitation.

Conclusions

Ionic composition varied seasonally and was closely correlated to the amounts of rainfall and pollution. Trajectory analyses showed that the trajectories to Lushan Mountain could be classified in six clusters and trajectories originating from the South Sea and the areas surrounding Lushan Mountain had the greatest impacts on precipitation chemistry.  相似文献   

19.

Purpose

Biosorption is an emerging, eco-friendly and economical method for treating the wastewater effluents. Compared to many other biological materials, algae biomass proved to be the better biosorbent due to the presence of cell wall polymers in them.

Methods

Algal biomasses namely Enteromorpha flexuosa and Gracilaria corticata were dried, crushed and used as biosorbents. Ponceau S, a diazo dye was used as a model adsorbate for the biosorption studies. The biosorbents were characterized by Scanning Electron Microscopy, FT-IR and zero point charge. Batch studies were performed by varying pH, biosorbent dosage and initial dye concentrations. Adsorption isotherms, kinetic and thermodynamic analyses were carried out. The effect of electrolytes was also studied. Batch desorption studies were also carried out using various reagents.

Results

Isotherm data were tested with Langmuir and Freundlich isotherm models and the results suggested that the Freundlich isotherm fitted the data well. Kinetic studies were performed with varying initial dye concentrations and the data were incorporated with pseudo first-order and pseudo second-order kinetic equations and was found that the studied biosorption processes followed pseudo second-order kinetic equation. Thermodynamic parameters were evaluated at three different temperatures 293?K, 300?K and 313?K. About 95% of the dye could be desorbed from both the biosorbents.

Conclusion

Both the algal biomasses had heterogeneous surfaces and followed pseudo second-order chemical kinetics. Thermodynamic parameters proved that the biosorption by both the biomasses were spontaneous, feasible and endothermic processes. Desorption studies proved the worth of the algal biomasses as biosorbents in industrial level.  相似文献   

20.

Purpose

Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal.

Materials and methods

Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied.

Results

The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that biosorption of these metals was a surface process. The main functional groups involved in these processes were hydroxyl (–OH) and carboxylic groups (C=O) with 37, 52, and 31 and 21, 14, and 34 % removal of Pb(II), Cr(III), and Cd(II), respectively. Langmuir was the best model for a single system. While extended Langmuir was the best model for binary and ternary metal systems. The maximum uptake capacities were 54.92, 34.78, and 29.99 mg/g and pore diffusion coefficients were 7.23, 3.15, and 2.76?×?10?11 m2/s for Pb(II), Cr(III), and Cd(II), respectively. Optimum pH was found to be 4. Pseudo-second-order was the best model to predict the kinetic process. Biosorption process was exothermic and physical in nature.

Conclusions

Pb(II) offers the strongest component that is able to displace Cr(III) and Cd(II) from their sites, while Cd(II) ions are the weakest adsorbed component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号