首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
The influence of formulation properties on spray droplet spectra and soil residues was studied in conifer forests in New Brunswick following aerial application of two oil-based aminocarb formulations of variable viscosities and volatilities. For a given volume rate of application, the formulation of low viscosity and high volatility provided a spectrum of small droplets and a low volume deposit on ground cards. For the same volume rate, the nonvolatile formulation of high viscosity provided a spectrum of larger droplets and consequently a higher volume deposit. Both formulations provided low soil residues, although those obtained with the nonvolatile formulation were much higher and persisted for much longer periods than those obtained with the volatile formulation. However, with both formulations the soil residues decayed to undetectable levels (less than 3 ng/g) within 5 days after spraying, indicating that none of the formulations caused any undue persistence of aminocarb in forest soils.  相似文献   

2.
Three aminocarb formulations, water-based Matacil 180F, oil-based Matacil 180F and oil-based Matacil 180D, were applied separately to the surface of a stream at 2.40 g a.i./min for 5 minutes. The highest aminocarb concentration in the top 1 cm of water was found 5 min after application of oil-based 180F (5000 ppb). The next highest concentration was 1862 ppb found in the top 1 cm layer of water 3 min after application of oil-based 180D, followed by 1306 ppb found 5 min after application of water-based 180F. Residue accumulations were first observed in sediment at 3 min and in fish tissues 0.5 h after application. The levels of accumulation were in the order of water-based 180F greater than oil-based 180F greater than oil-based 180-D. After the application of water-based 180F, the highest concentrations were 20.2 ppb in sediment after 5 min and 127 ppb in fish tissues after 3 h. Residues disappeared rapidly from all three matrices and could not be detected after a period of 3-25 h.  相似文献   

3.
A procedure to assess pesticide emission to the air and characterise possible air pollution sources was carried out using a tracer dye and 2 mm PVC lines during air-assisted spraying of an artificial vineyard. Three experiments were performed to evaluate the method feasibility, quantify upward movements of sprayed droplets and investigate the influence of microclimatic variables on pesticide emission. During each experiment two test series were carried out with two droplet size distributions (very fine and fine spray, according to the BCPC classification). The amount of sprayed liquid collected at 2.5 m above ground varied between 9.0% and 10.7% of the total dose applied for very fine spray and between 5.6% and 7.3% for fine spray. In stable atmospheric conditions the spray drifted along the mean wind direction over the crop whereas in unstable conditions the sprayed liquid plume was larger, with a greater amount of material sent to higher levels. A statistical model based on a simple multiple regression featuring droplet characteristics and microclimatic variables (wind speed, temperature, stability parameter and relative humidity) provided a robust estimate of spray loss just above the crop, with an acceptable determination coefficient (R2=0.84). This method is therefore suitable for quantifying spray drift and provides a way to study the influence of several variables on the amount of pesticide released into the atmosphere by air-assisted spraying, with suitable accuracy.  相似文献   

4.
The effect of two surfactants and two polymeric adjuvants on droplet size spectra and deposition patterns of nine spray formulations was investigated following atomization in a laboratory chamber using a spinning disc atomizer that can produce a narrow droplet size spectrum. Spray droplets were sampled using Kromekote cards and deposit recoveries were examined on glass plates. Physicochemical properties studied were: viscosity-shear rate relationship, surface tension, volatility, pH, conductance, electrophoretic mobility and zeta potential. Formulations containing low surfactant concentrations provided Newtonian liquids with low viscosities. These liquids atomized into small droplets and provided low recoveries of spray deposits on sampling units. However, formulations containing polymeric adjuvants, and a high concentration of a non-ionic surfactant provided pseudoplastic liquids with high viscosities. These formulations resulted in large droplets with high recoveries of spray deposits on sampling units. Among the physicochemical properties studied, viscosity, surface tension, volatility and electrophoretic mobility, played important roles on liquid atomization and droplet deposition.  相似文献   

5.
Abstract

A fluorescent method for the determination of rhodamine B (RhB) and brilliant sulfaflavine (BSF) dual tracers on cotton string collectors and in spray tank solutions was developed for the evaluation of the effects of adjuvants on the atmospheric drift of agricultural sprays. Both tracers on collectors were extracted with deionized water simultaneously and measured directly with a Fluorescent Specrometer by switching the maximum excitation and emission wavelengths. The linear ranges of the RhB and BSF standard curves were 0–50 and 0–10 ppb respectively. Recoveries of tracers on cotton strings ranged from 92.9% ± 1.1% to 95.1% ± 1.0% for RhB and 91.9% ± 2.8% to 103% ± 0.6% for BSF when spiked levels ranged from 0.25 to 2.5 μg per collector. The detection limit of the instrument was approximately 0.1 ppb for both tracers. The detection limits of the analytical method were approximately 0.1 ppb for RhB and 0.3 ppb for BSF when the background levels of cotton strings were subtracted. The presence of one tracer in the solution did not significantly interfere with the detection of the other tracer in the same solution. The presence of adjuvants added to the spray tank solutions did not interfere with the detection of both tracers when the adjuvants were applied at the manufacturer's maximum recommendation rates.  相似文献   

6.
Abstract

Most modern pesticides are expensive. Application of excessive dosage rates is likely to cause undesirable biological side‐effects and is economically wasteful. Non‐uniform distribution of the spray cloud, or application at the wrong time, may result in failure to control the pest. It is the responsibility of the field operator to acquire sufficient knowledge and skill to ensure proper use of the control agents, to increase efficiency of their usage and to reduce unwanted side‐effects. To achieve this goal, he must take into consideration the various physical factors that govern field performance of pesticides.

A simple relationship exists between the spray volume and emission rate used, and droplet size produced. The use of extremely low spray volumes (i.e., those less than 2.0 litre per ha) for forest insect control in Canada, as opposed to higher volumes used in agriculture, necessitates the release of fine droplets (ranging from 20 to 70 μm in diameter) to obtain adequate coverage of the target area. These droplets take a long time to sediment downwards, evaporate in‐flight, become smaller in size and/or form powdery residues, thus contributing to off‐target drift and impaired droplet adhesion to target surfaces. Physical factors such as rain washing, degradation by sunlight and erosion by wind also influence the longevity of pesticide deposits on foliage which is crucial during the critical period of pest control.

Factors affecting the mode of entry into insects are related to the type of ingredients used in formulation. If a pesticide acts via crawling contact, formulations which would provide surface deposits would be more beneficial than emulsions or oil‐based mixes which tend to undergo penetration into foliar cuticle. Physical factors that affect field performance of a pesticide tank mix are related to phase separation and ‘breakdown of emulsions’ in the application equipment; ‘agglomeration and caking’ of wettable powder dispersions at the bottom of the tank; impaired flow behaviour of highly viscous formulations; and coarse atomization of high‐viscosity tank mixes leading to poor target cover.  相似文献   

7.
The investigation of the migration of a high pH plume in a fractured shear zone is foreseen by a long-term experiment at the Grimsel rock laboratory. In order to characterise the initial conditions for the long-term experiment and to evaluate an optimal hydraulic in situ set-up, several dipole experiments with nonreacting tracers have been performed. The dipole experiments differ in geometry, pumping rates and orientation to the background water flow. Several single and double-porosity models have been applied to fit the results of these dipole tracer tests in order to extract values for some transport parameters and discriminate for certain transport processes. A two-dimensional porous medium approach was successfully used to fit tracer breakthrough curves measured for a dipole experiment. A model based on a one-dimensional dual porous medium approach was also successful, although the applied hydraulic dipole, with similar injection and extraction rates, suggests the existence of an extended two-dimensional flow field. For the two-dimensional porous medium approach, tracer breakthrough could only be fitted with a complex flow field geometry within the heterogeneous fractured shear zone. The heterogeneity was generated by heterogeneous porosity and hydraulic permeability distributions. Predictions for further dipole geometries and a sorbing tracer have been calculated by means of both models using the flow and transport parameters deduced from fits for a single dipole experiment. This allows for comparison with the measured breakthrough of sorbing tracers. The foreseen experiment with sorbing (radionuclide) tracers will help decide on the appropriate approach that should be used to describe such dipole experiments in this shear zone. Additionally, the migration and spreading of a solution with high pH has been calculated taking into account mineral dissolution and precipitation in a two-dimensional porous medium approach in order to estimate the amount and character of the mineral reactions induced by the interaction between the high pH solution and the rock.  相似文献   

8.
Abstract

The feeding behavior of gypsy moth larvae exposed to two pesticide deposits (Bt and carbaryl) on oak leaf disks was monitored to determine the relationships between its efficacy and application parameters (droplet density and pesticide concentration). A range of pesticide concentrations and droplet densities (from 9 to 149 droplets/cm2) was used to simulate high and low application rates produced by different methods of application in the field.

The LD50 and the LC50, appeared to be affected by the spatial distribution of the deposit on the leaf surface. Both Bt and carbaryl showed a decreasing LD50 at increasing time after spray. The LD50 of Bt decreased from 14.1 BIU/liter to 3.1 BIU/Iiter between 48 and 144 hours after spray. The results show that feeding inhibition by Bt is more closely related to concentration than to droplet density and dose per unit area with the highest feeding inhibition occurring at 10 BIU/liter at 9 droplets/cm2. With carbaryl, an increase in both concentration and droplet density was necessary to cause a decrease in leaf area eaten by larvae.  相似文献   

9.
The influence of adjuvants on physicochemical properties, droplet size spectra and deposit patterns of five aqueous spray mixtures was studied under laboratory conditions, using two surfactants, Atlox 3409F and Triton X-114; two humectants, propylene glycol and glycerol; and one polymeric adjuvant, Agrisol FL-100F. For the sake of comparison, two fenitrothion formulations containing polymeric adjuvants, and water were also included in the study. Spray was applied at 25 degrees C and 75 +/- 5% relative humidity, in an enclosure using a twin fluid atomizer. Deposits were collected on Kromekote card/glass plate units. Physicochemical properties studied were: relative viscosity, surface tension, apparent viscosity-shear rate relationship, volatility, pH and conductance. The first four of these properties played significant roles on the droplet and deposit patterns on sampling units. However, the chemical nature of the adjuvants also played some role. Between the two surfactants tested, Triton X-114 provided a pseudoplastic medium, but both surfactant solutions provided similar droplet size spectra and deposit patterns. Between the two humectants, glycerol proved to be more advantageous than propylene glycol. The polymeric adjuvant provided droplet sizes similar to those of the two surfactants, although the recovery of the applied spray volume was higher. Among the two fenitrothion formulations, the one containing lower amounts of polymeric adjuvants showed some advantages, although deposits on the actual biological target should be examined before any definite conclusions can be drawn on the optimum adjuvant concentrations in end-use formulations.  相似文献   

10.
A proposed tracer diffusion test for the Exploratory Shaft Facility at Yucca Mountain, NV, is modeled. For the proposed test, a solution containing conservative tracers will be introduced into a borehole in the geologic medium of interest. The tracers will diffuse and advect from the saturated source region into the unsaturated matrix in the surrounding tuff. After some time, the borehole is to be overcored, and tracer concentrations in the fluid will be measured in the core as a function of distance from emplacement. The data will be used to evaluate diffusive behavior and to derive effective diffusion coefficients for the tracers in the specific tuff. Numerical simulations are used to study the effects of effective diffusion coefficient, porosity, saturation, and fracturing on tracer transport. Results are reported for numerical simulations of tests in the Topopah Spring Member and the Tuff of Calico Hills, which have significantly different porosities and saturations. The simulations make the following predictions: The spread of tracer during the test will be sensitive to the effective diffusion coefficient of the tracer. Tracer will diffuse farther in the Topopah Spring Member than in the Tuff of Calico Hills because of the former's lower porosity and saturation. Tracer transport by advection into the Topopah Spring Member will be greater than that into the Tuff of Calico Hills because of capillary effects. While advection will be a significant mechanism for tracer penetration into the Topopah Spring tuff, it will be less significant for tracer penetration into the Calico Hills tuff. The proximity of a single vertical fracture to the source region determines its effects on tracer transport, especially if the fracture diverts fluid flowing from the source region into the matrix.  相似文献   

11.
Abstract

The effects of drop size and formulation upon the spread of pesticide droplets impacting on water‐sensitive papers (WSPs) was investigated. Droplets of diameter 70–350 μm, of four permethrin formulations, were produced using a monosize droplet generator. The droplets were collected on WSPs and in Dow Corning fluid and their diameters measured using a binocular microscope. Spread factors, upon the WSPs, for each dropsize/formulation combination were then calculated. Spread factors varied with both formulation and droplet size and for droplets of 200 and 300 μm diameter spread was significantly correlated with the dynamic surface tension of the formulation. The results suggest that proper calibration of WSPs is necessary for effective droplet sizing.  相似文献   

12.
Some recent converging tracer tests with sorbing tracers at the Asp? Hard Rock Laboratory in Sweden, the TRUE tests, have been predicted using only laboratory data and hydraulic data from borehole measurements. No model parameters were adjusted to obtain a better fit with the experiments. The independent data were fracture frequency and transmissivity data obtained in the field and laboratory data on sorption and matrix diffusion. Transmissivity measurements in five boreholes in the rock volume containing the region surrounding the injection and collection points show that there is a high frequency of water conducting fractures. Of 162 packed off sections with 0.5 m packer distances, 112 were found to have a transmissivity above the detection limit. The specific flow-wetted surface (FWS) of the rock mass could be estimated from these data. The transmissivities were found to be reasonably well described by a lognormal distribution. Laboratory data on diffusion and sorption properties together with the hydraulic data were used to "predict" the residence time distribution (RTD) of the sorbing tracers. The results were compared with the experimental breakthrough curves. In these experiments, the water residence time is very small compared to the residence time of the sorbing tracers due to their diffusion and sorption within the rock matrix. We thus could neglect the influence of the water residence time in our predictions. Therefore, no information on water residence times or on "dispersion" was needed. The dispersion of the sorbing tracers is caused by the different sorbing tracer residence times in different pathways. The sorbing tracer residence time is determined by the ratio of flowrate to the flow-wetted surface in the different pathways and not by the water residence time. Assuming a three-dimensional flow pattern and using the observed fracture frequency and flowrate distribution, breakthrough curves for three strongly sorbing tracers were predicted. Only the laboratory data, the transmissivity measurements and the pumping flowrate were used in the predictions. No information on the water residence time as obtained by the nonsorbing tracers was used. The predictions were surprisingly accurate.  相似文献   

13.
The partitioning tracer technique for dense nonaqueous phase liquid (DNAPL) characterization was evaluated in an isolated test cell, in which controlled releases of perchloroethylene (PCE) had occurred. Four partitioning tracer tests were conducted, two using an inverted, double five-spot pumping pattern, and two using vertical circulation wells. Two of the four tests were conducted prior to remedial activities, and two were conducted after. Each test was conducted as a "blind test" where researchers conducting the partitioning tracer tests had no knowledge of the volume, method of release, nor resulting spatial distribution of DNAPL. Multiple partitioning tracers were used in each test, and the DNAPL volume estimates varied significantly within each test based on the different partitioning tracers. The tracers with large partitioning coefficients generally predicted a smaller volume of PCE than that expected based on the actual release volume. However, these predictions were made for low DNAPL saturations (average saturation was approximately 0.003), under conditions near the limits of the method's application. Furthermore, there were several factors that may have hindered prediction accuracy, including tracer degradation and remedial fluid interference.  相似文献   

14.
Tracer tests were conducted to evaluate the effect of a complexing sugar flush (CSF) on in-situ biodegradation potential at a site contaminated by jet fuel, solvents, and other organic compounds. Technical-grade hydroxypropyl-beta-cyclodextrin was used during the CSF study, which was conducted in a hydraulically isolated cell emplaced in a surficial aquifer. In-situ biodegradation potential was assessed with the use of tracer tests, which were conducted prior to and immediately following the CSF study. Ethanol, hexanol, and benzoate were used as the biodegradable tracers, while bromide was used as a nonreactive tracer. The results indicate that the biodegradation of benzoate was similar for both tracer tests. Conversely, the biodegradation of ethanol (23% increase) and hexanol (41% increase) was greater for the post-CSF tracer test. In addition, analysis of core samples collected from within the test cell indicates that the population density of aerobic jet-fuel degraders increased in the vicinity of the injection wells during the CSF. These results indicate that the cyclodextrin flush did not deleteriously affect the indigenous microbial community. This study illustrates that tracer tests can be used to evaluate the impact of remediation activities on in-situ biodegradation potential.  相似文献   

15.
The aim of present study was to develop and evaluate sodium dodecyl sulfate (SDS) self-microemulsifying systems (SMES) for the removal of an anionic dye xylenol orange (XO) from its bulk aqueous media via liquid–liquid adsorption. The composition of SDS SMES was optimized by Box–Behnken statistical design for the maximum removal of XO from its aqueous solution. Various SDS formulations were prepared by spontaneous emulsification method and characterized for thermodynamic stability, self-microemulsification efficiency, droplet size, and viscosity. Adsorption studies were conducted at 8, 16, and 24 h by mixing small amounts of SDS formulations with relatively large amounts of bulk aqueous solution of XO. Droplet size and viscosity of SDS formulations were significantly influenced by oil phase concentration (triacetin), while surfactant concentration had little impact on droplet size and viscosity. However, the percentage of removal of XO was influenced by triacetin concentration, surfactant concentration, and adsorption time. Based on lowest droplet size (35.97 nm), lowest viscosity (29.62 cp), and highest percentage of removal efficiency (89.77 %), formulation F14, containing 2 % w/w of triacetin and 40 % w/w of surfactant mixture (20 % w/w of SDS and 20 % w/w of polyethylene glycol 400), was selected as an optimized formulation for the removal of XO from its bulk aqueous media after 16 h. These results indicated that SDS SMES could be suitable alternates of solid–liquid adsorption for the removal of toxic dyes such as XO from its aqueous solution through liquid–liquid adsorption.  相似文献   

16.
Abstract

The use of formulation adjuvants to increase the drop size of pesticide sprays has followed a practice which has evolved through many years of experimentation and development. The earliest materials used were simply designed to make the spray mix viscous on the premise that a mayonnaise‐like fluid would produce larger drops and hence increase the deposit efficiency. These viscomer materials, emulsions and water soluble thickeners such as starch and agars, as well as more complex cellulose materials, produced thick non‐Newtonian fluids which were difficult to mix, pump and spray, and provided questionable results. First, the larger drops reduced target coverage from a given volume of spray; and second, field tests with these definitely showed that a large volume of small drops were still being produced even with the thickest of formulations.

The next step in adjuvant evolution was the introduction of polyvinyl, polyacrylamide and polyamide elastomer materials. These polymers are also non‐Newtonian, but due to their peculiar molecular bonding, they have the capability of forming long string‐like streams which when atomized can retract into a spray of large drops. Pure forms of these polymers are blended by commercial producers to enable compatibility with pesticide chemicals. We have conducted a series of laboratory and wind tunnel tests; first, to try and establish some physical parameters identifying their characteristics and second, to determine how these adjuvants affect atomization and the production of small drift‐prone drops (i.e., those smaller than 120 μm in diameter).

Our results with the laboratory studies of physical properties and of the wind tunnel drop size tests have been inconclusive. The elastomer materials have relatively low viscosity (1.5 to 6 mPa.s) and reduced surface tension (50 to 60 mN/m) but our stream‐flow extension tests were non‐productive. The drop size studies comparing water sprays with polymer‐water mixtures gave us a mixed picture. Generally drop size was increased for all of the fan (deflector and milled orifice) and cone type atomizers. But an increase was also indicated of the volume of spray in drops less than 120 μm showing that the polymer did not fully control the production of these small drops under all of the testing procedures we studied.

It is difficult to evaluate the capability of these additives for controlling or reducing production of the drift‐prone small drops. While the pure solutions of the water soluble polymers would appear to be capable of this desirable effect, it is also evident that in order to make these formulations compatible with pesticide spray solutions, several other solvents, emulsifiers and surface active chemicals are added to the formulation, thus affecting the atomization characteristics and hence their drift‐control capability.  相似文献   

17.
A GIS based pesticide risk indicator that integrates exposure variables (i.e. pesticide application, geographic, physicochemical and crop data) and toxicity endpoints (using species sensitivity distributions) was developed to estimate the Predicted Relative Exposure (PREX) and Predicted Relative Risk (PRRI) of applied pesticides to aquatic ecosystem health in the Lourens River catchment, Western Cape, South Africa. Samples were collected weekly at five sites from the beginning of the spraying season (October) till the beginning of the rainy season (April) and were semi quantitatively analysed for relevant pesticides applied according to the local farmers spraying programme. Monitoring data indicate that physicochemical data obtained from international databases are reliable indicators of pesticide behaviour in the Western Cape of South Africa. Sensitivity analysis identified KOC as the most important parameter influencing predictions of pesticide loading derived from runoff. A comparison to monitoring data showed that the PREX successfully identified hotspot sites, gave a reasonable estimation of the relative contamination potential of different pesticides at a site and identified important routes of exposure (i.e. runoff or spray drift) of different pesticides at different sites. All pesticides detected during a monitored runoff event, were indicated as being more associated with runoff than spray drift by the PREX. The PRRI identified azinphos-methyl and chlorpyrifos as high risk pesticides towards the aquatic ecosystem. These results contribute to providing increased confidence in the use of risk indicator applications and, in particular, could lead to improved utilisation of limited resources for monitoring and management in resource constrained countries.  相似文献   

18.
A key component in the operation of almost all bioreactor landfills is the addition of water to maintain optimal moisture conditions. To determine how much water is needed and where to add it, in situ methods are required to measure water within solid waste. Existing technologies often result in measurements of unknown accuracy, because of the variability of solid waste materials and time-dependent changes in packing density, both of which influence most measurement methods. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone--the partitioning gas tracer test--was tested. In this technology, the transport behavior of two gas tracers within solid waste is used to measure the fraction of the void space filled with water. One tracer is conservative and does not react with solids or liquids, while a second tracer partitions into the water and is separated from the conservative tracer during transport. This technology was tested in four different solid waste packings and was capable of determining the volumetric water content to within 48% of actual values, with most measurement errors less than 15%. This technology and the factors that affect its applicability to landfills are discussed in this paper.  相似文献   

19.
Direct pumping and enhanced recovery of coal tar and creosote dense, non-aqueous phase liquids (DNAPLs) from the subsurface have had mixed results because these DNAPLs are viscous fluids that can potentially alter aquifer wettability. To improve the inefficiencies associated with waterflooding, the research presented here considered the use of a polymer solution that can be added to the injected flood solution to increase the viscosity and decrease the velocity of the flooding solution. Results from one-dimensional, vertically oriented laboratory column experiments that evaluate the recovery of coal-derived DNAPL with both water and polymer flooding solutions are presented. The final DNAPL saturation remaining in the column was assessed in water and oil-wet systems for three viscous DNAPLs. Adding polymer to increase the aqueous solution viscosity did not have a significant impact in water-wet systems. A final DNAPL saturation of approximately 19% was achieved for both water and polymer floods. In contrast, the addition of polymer significantly improved recovery in oil-wet systems. The final saturation was over 40% in oil-wet systems after waterflooding, but approximately 19% with a polymer flushing solution. Although the final saturation produced with polymer flooding was similar between the oil- and water-wet systems, differences in the relative permeability and distribution of DNAPL in the porous matrix caused the DNAPL recovery to be much slower in the oil-wet system.  相似文献   

20.
A novel inverse technique is proposed to quantitatively characterize macroscopic variability in aquifer reactivity in a Lagrangian representation. Reactivity heterogeneity is expressed in terms of distributions of flux over cumulative time of exposure of the solution to reactive surface area, termed here 'cumulative reactivity'. In cases involving single aqueous species the combined effects of physical and reactivity heterogeneity on reactive solute transport can often be established and further investigated through joint distributions of flux over travel time and cumulative reactivity. The inverse technique requires the breakthrough curve of a passive tracer to determine the distribution of flux over travel time, and additional breakthrough curves of reactive tracers provide additional moments of the distribution of flux over cumulative reactivity given travel time. Thus breakthroughs of one passive and two reactive tracers can provide the mean and variance of the distribution of flux over cumulative reactivity. This Lagrangian characterization is achieved with knowledge of the types of reactive surfaces present, but not their spatial locations. The distributions can subsequently be applied via forward modeling using the same technique to predict breakthrough curves of other solutes undergoing first-order reactions in similar physically and chemically heterogeneous configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号