首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sorption of lead by three soils that differed in texture and calcium carbonate content was studied at three different temperatures. Lead sorption was found to conform to both Freundlich and Langmuir isotherms. Soil adsorption maxima were derived from the reciprocal of the slope obtained by a least-squares fit of Langmuir plots for each soil. The highest adsorption capacity was exhibited by CaCO(3)-rich soil (773.55 mmol Pb kg(-1)). Raising the temperature from 298 K to 308 and 318 K increased the sorption capacity of all of the soils.  相似文献   

2.
Desorption of cadmium from goethite: effects of pH, temperature and aging   总被引:1,自引:0,他引:1  
Mustafa G  Kookana RS  Singh B 《Chemosphere》2006,64(5):856-865
Cadmium is perhaps environmentally the most significant heavy metal in soils. Bioavailability, remobilization and fate of Cd entering in soils are usually controlled by adsorption-desorption reactions on Fe oxides. Adsorption of Cd on soil colloids including Fe oxides has been extensively studied but Cd desorption from such soil minerals has received relatively little attention. Some factors that affect Cd adsorption on goethite include pH, temperature, aging, type of index cations, Cd concentrations, solution ionic strength and presence of organic and inorganic ions. This research was conducted to study the influence of pH, temperature and aging on Cd desorption from goethite. Batch experiments were conducted to evaluate Cd desorption from goethite with 0.01 M Ca(NO3)2. In these experiments Cd desorption was observed at 20, 40 and 70 degrees C in combination with aging for 16 h, 30, 90 and 180 d from goethite that adsorbed Cd from solutions containing initial Cd concentrations of 20, 80 and 180 microM. Following the adsorption step Cd desorption was measured by 15 successive desorptions after aging at various temperatures. At the lowest amount of initially adsorbed Cd and equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 17% with aging from 16 h to 180 d and the corresponding decrease at equilibrium pH 6.0 was from 32% to 3%. There was a substantial decrease in Cd desorption with increasing equilibration temperature. For example, in goethite with the lowest amount of initial adsorption at equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 31% with increase in temperature from 20 to 70 degrees C, even after 16 h. Dissolution of Cd adsorbed goethite in 1M HCl, after 15 successive desorptions with 0.01 M Ca(NO3)2, indicated that approximately 60% of the Cd was surface adsorbed. Overall, dissolution kinetics data revealed that 23% to 88% Cd could not be desorbed, which could possibly be diffused into the cracks and got entrapped in goethite crystals. At elevated temperature increased equilibrium solution pH favoured the formation of CaCO3 and CdCO3 which reasonably decreased Cd desorption. Cadmium speciation showed the formation of calcite and otavite minerals at 40 and 70 degrees C due to increase in pH (>9.5) during aging. X-ray diffraction analysis (XRD) of these samples also revealed the formation of CaCO3 at elevated temperatures with aging. While mechanisms such as Cd diffusion and/or entrapment into fissures and cracks in goethite structure with increase in temperature and aging are possible.  相似文献   

3.
This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300,000 (g gas/cm2/s/atm gas), respectively. Thus, the kinetics of the calcination reaction were found to be much faster (approximately 500 times) than those of the sulfation reaction examined previously in this laboratory.  相似文献   

4.
The persistence of metsulfuron-methyl (methyl 2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosul fonyl]benzoate) in nonautoclaved and autoclaved Selangor, Lating, and Serdang series soils incubated at different temperatures and with different moisture contents was investigated under laboratory conditions using cucumber (Cucumis sativus L.) as the bioassay species. Significant degradation of metsulfuron-methyl was observed in nonautoclaved soil compared with the autoclaved soil sample, indicating the importance of microorganisms in the breakdown process. At higher temperatures the degradation rate in nonautoclaved soil improved with increasing soil moisture content. In nonautoclaved Selangor, Lating and Serdang series soils, the half-life was reduced from 4.79 to 2.78 days, 4.9 to 3.5, and from 3.3 to 1.9 days, respectively, when the temperature was increased from 20 degrees to 30 degrees C at 80% field capacity. Similarly, in nonautoclaved soil, the half-life decreased with an increasing soil moisture from 20% to 80% at 30 degrees C in the three soils studied. In the autoclaved soil, the half-life values were slightly higher than those obtained in the nonautoclaved soils, perhaps indicating that the compound may be broken down by nonbiological processes. The fresh weight of the bioassay species was reduced significantly in Serdang series soil treated with metsulfuron-methyl at 0.1 ppm. However, the reduction in fresh weight of the seedlings was least in Lating series soil, followed by Selangor series soil.  相似文献   

5.
The effects of three soil pH's, three soil temperatures, and three soil moistures on [14C]isofenphos degradation were investigated. All three factors interacted strongly and significantly affected the persistence of isofenphos as well as the formation of the degradation products (p less than 1%). Isofenphos degradation was greatest at the higher temperatures 35 degrees C greater than 25 degrees C greater than 15 degrees C (except under alkaline pH's), medium moisture 25% greater than 30% greater than 15%, and in both alkaline (pH = 8) and acidic soils (pH = 6) compared with neutral soil (pH = 7). Isofenphos oxon formation was greatest at higher temperatures 35 degrees C compared with 25 degrees C and 15 degrees C, in acidic soil greater than neutral soil greater than alkaline soil, and under high moisture (30%) compared with the 15% and 22.5% moistures. The formation of soil-bound residues was greatest at higher temperatures 35 degrees C greater than 25 degrees C greater than 15 degrees C, higher moisture 30% compared with 15% and 22.5%, and in alkaline soil compared with neutral and acidic soils.  相似文献   

6.
Mineralization studies of natural steroid hormones (e.g., 17β-estradiol, E2) are performed in environmental incubators, usually under a constant temperature such as 20°C. In this paper, we present a microcosm protocol that quantified the mineralization of E2 in soils under field temperatures. The nine agricultural soils tested had a wide range of soil organic carbon (1.1 to 5.2%) and clay (9 to 57%) contents. The calculated time over which half of the applied E2 was mineralized (E2-½) ranged from 299 to 910 d, and total E2 mineralization at 48 d (E2-TOT48) ranged from 4 to 13%. In subsequent laboratory incubations, the same soils were incubated under a constant temperature of 20°C, as well as under cyclic temperatures of 14.5°C (14 h) and 11.5°C (10h), which was within the temperature extremes observed in the field microcosms. E2-½ ranged from 157 to 686 d at 20°C and from 103 to 608 d at the cyclic temperatures, with the E2-TOT48 ranging from 6 to 21% at 20°C and from 7 to 30% under cyclic temperatures. Despite the overall 6.75°C lower mean temperatures under the cyclic versus constant temperatures, E2 mineralization was stimulated by the temperature cycles in three soils. Regardless of the incubation, the same loamy sand soil always showed larger E2 mineralization than the other eight soils and this loamy sand soil also had the smallest E2 sorption. Current modeling approaches do not take into consideration the effects of temperature fluctuations in the field because the input parameters used to describe degradation are derived from laboratory incubations at a constant temperature. Across the eight soils, E2-½ was on average 1.7 times larger and E2-TOT48 was on average 0.8 times smaller under field temperatures than under a constant 20°C. Hence, we conclude that incubations at 20°C give a reasonable representation of E2 mineralization occurring under field conditions to be expected in a typical Prairie summer season.  相似文献   

7.
Pyrolysis enables ZnCl2 immersed biosolid to be reused, but some hazardous air pollutants are emitted during this process. Physical characteristics of biosolid adsorbents were investigated in this work. In addition, the constituents of pyrolytic exhaust were determined to evaluate the exhaust characteristics. Results indicated that the pyrolytic temperature was higher than 500 °C, the specific surface area was >900 m2/g, and the total pore volume was as much as 0.8 cm3/g at 600 °C. For non-ZnCl2 immersed biosolid pyrolytic exhaust, VOC emission factors increased from 0.677 to 3.170 mg-VOCs/g-biosolid with the pyrolytic temperature increase from 400 to 700 °C, and chlorinated VOCs and oxygenated VOCs were the dominant fraction of VOC groups. VOC emission factors increased about three to seven times, ranging from 1.813 to 21.448 mg/g for pyrolytic temperatures at 400–700 °C, corresponding to the mass ratio of ZnCl2 and biosolid ranging from 0.25–2.5.  相似文献   

8.
The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis. Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5 mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.  相似文献   

9.
Successful remediation of contaminated soils is often limited by the low bioavailability of hydrophobic pollutants, which may slow the process significantly. In this study we investigated the benefits of high temperature in enhancing hydrocarbon degradation rates and evaluated the effect of different biostimulants. Hexadecane polluted soil microcosms with various amendments were incubated both at 60 degrees C and room temperature (18 degrees C) and analyzed periodically up to 40d for the degradation of hydrocarbon and the response of the microbial population. Natural attenuation showed a satisfactory intrinsic degradative capability at 60 degrees C and the addition of inorganic N, P and K increased the degradation rates by 10%. The addition of rhamnolipid biosurfactant further enhanced the bioavailability of alkane to microbial degradation resulting in up to 71% removal at 60 degrees C and 42% at 18 degrees C. Significant input to hexadecane degradation occurred at 60 degrees C (70%) as a result of the bioaugmentation with thermophilic Geobacillus thermoleovorans T80, which did not take place at 18 degrees C. Coupling high temperature to all amendments resulted in 90% removal of the hexadecane from soil after 40d which was also accompanied with an increase in bacterial numbers. The results suggest that thermally enhanced bioremediation may be an efficient technology for the treatment of hydrocarbon-contaminated soils.  相似文献   

10.
The combined effect of time and temperature on elemental release and speciation from a metal contaminated soil (Master Old Site, MOS) was investigated. The soil was equilibrated at 10, 28, 45, 70 and 90 degrees C for 2 days, 2 weeks, and 2 months in the laboratory. Dissolved organic carbon (DOC), total soluble elements (by ICP), and labile metals (by DPASV) were determined in the filtered (0.22 microm) supernatants. For the samples equilibrated at 90 degrees C, DOC fractions were size fractionated by filtration and centrifugation; a subsample was only centrifuged while another was also filtered through a 0.45 microm filter. Analyses of the supernatants (ICP, DPASV, DOC) were performed on all size fraction subsamples. Dissolved organic carbon (DOC) increased both with temperature and incubation time; however, metal behavior was not as uniform. In general, total soluble metal release (ICP) paralleled the behavior of DOC, increasing with both time and temperature, and confirming the importance of soil organic matter (SOM) in metal retention. Voltammetric analysis (dpasv) of Cu and Zn showed that very little of these metals remains labile in solution due, presumably, to complexation with dissolved organic matter. Labile concentrations of Cd, on the other hand, constituted a significant portion (50%) of total soluble Cd. Copper and Al increased in solution with time (up to 2 months) and temperature up to 70 degrees C; however, at 90 degrees C the soluble concentration declined sharply. The same behavior was observed after equilibration for longer periods of time (550 days) at lower temperatures (23 and 70 degrees C). While concentrations of labile Cu and total soluble Cu and Al increased in the unfiltered samples, the trend remained the same. DPASV analysis showing shifts in labile Cu complexes with temperature and time, together with the results from the unfiltered samples, lead to the hypothesis that Cu was complexing with large polymers that could form at the elevated temperature, and thus be removed from the analyzed solution. It is possible that Cu and Al released by SOM oxidation has re-sorbed or complexed to more recalcitrant organic matter or to mineral phases. Variations in the relative molecular size fractions present within the DOC pool produced by increased time and temperature may influence the element-DOC complexes present in solution and their behavior in soil environments.  相似文献   

11.
The fate of herbicides trifluralin, pendimethalin, alachlor and metolachlor in paddy field soils amended with plant materials was investigated. The plant materials were purple sesbania, vegetable soybean and rice straw. The investigation was performed at two temperatures (25 and 40 degrees C) and two soil water moistures (60 and 90% water-holding capacity). The results showed linear and Freudlich equations described the adsorption of amide compound to soil. Adsorption coefficient (K(d)) fit to linear equation were in general greater in plant material-amended soils than in non-amended soil, especially in soil amending with rice straw. Increasing temperature and soil water moisture content shortened the half-lives of compounds in various treated soils. The movement of compounds in the soil columns showed the maximum distribution of aniline type compound, trifluralin and pendimethalin, appeared at the upper top of 0 to 5 and 0 to 10 cm of soil column, respectively, and of anilide type, alachlor and metolachlor, were distributed at 0 to 25 cm of the soil column. The mobility of chemicals in the different treated soils was simulated by the behavior assessment model (BAM). There was no significant difference among different plant material incubated soils on dissipation and mobility of compounds in soils.  相似文献   

12.
The influence of temperature and solar radiations on the rapid dissipation of DDT from tropical soils was studied by quantifying volatilisation, mineralisation, binding and degradation of ((14)C)-p,p'-DDT in a sandy loam soil. The bulk of the DDT loss occurred by volatilisation, which increased fivefold when the temperature changed from 15 to 45 degrees C. Degradation of DDT to DDE was also faster at higher temperatures. Mineralisation of DDT, though minimal, increased with temperature and time. Higher temperatures also enhanced binding of DDT to soil. Flooding the treated soil further increased volatilisation and degradation, although mineralisation was greatly reduced. Exposure of flooded and unflooded soils treated with DDT to sunlight in quartz, glass and dark tubes for 42 days during summer resulted in significant volatile losses. Volatilisation in the quartz tubes was nearly twice as great as that in the dark tubes The volatilised organics from the quartz tubes contained larger amounts of p,p'-DDE than the glass and dark tubes. Higher rates of volatilisation and degradation were found in flooded soils. Also significant quantities of p,p'-DDD were detected in addition to DDE. The data clearly show that volatilisation is the major mechanism for the rapid dissipation of DDT from Indian soils.  相似文献   

13.
Abstract

Artificially lead-contaminated soils with different lead contents (200, 450, 600, and 900 ppm) were thermally immobilized in both fixed-bed and fluidized-bed modes at moderate treating temperatures (less than 500 °C) for various retention times. Cement powder and brick powder were added to the artificially contaminated soils to enhance lead immobilization. Results indicate that increasing treating temperature and time increases the extent of lead immobilization, as determined by the U.S. Environmental Protection Agency's (U.S. EPA) Toxicity Characteristics Leachability Procedure (TCLP). The percentage of lead leached from the soil/ cement mixtures was in the range of less than 0.251%, compared with the range between 13.6% and 40.7% for the corresponding soil/brick mixtures. As the amount of brick dust added to the Pb-doped soil was increased, the specific Pb immobilization effectiveness increased from 0.0675 to 0.149 mg Pb/g brick (for the 20- and 50-gram brick addition, respectively). An increase in air flow rate from 2 to 40 L/min caused a slight decrease in the Pb leaching percentage from 14.96% to 11.59%. Both the Freundlich and Langmuir isotherms give a satisfactory fit (r = 0.945 ~ 0.998) for the data derived from a TCLP test of the thermally-treated soil samples (105 °C and 500 °C) that contained lead contaminants. Sorption of lead contaminants in soil and sorbent matrices was the primary type of chemisorption. The kinetic results indicated that the Pb-doped soil system was too complicated to be described by a simple calculation.  相似文献   

14.
Wright SF  Nichols KA  Schmidt WF 《Chemosphere》2006,64(7):1219-1224
Glomalin, a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, is a major component of the humus fraction of soil organic matter. Glomalin is extracted from soil and hyphae of AM fungi by using sodium citrate at 121 degrees C in multiple 1-h cycles, but extensive extraction does not solubilize all glomalin in all soils. Efficacies of 100 mM sodium salts of citrate, borate or pyrophosphate (pH 9.0, 121 degrees C) were tested for two 1-h cycles for hyphae from four AM fungal isolates and four 1-h cycles for seven soils from four US geographic regions. Residual soil glomalin was examined by pyrophosphate extraction of soils previously extracted with citrate or borate followed by extraction of all soils after treatment with NaOH. Hyphal extracts were compared using Bradford-reactive total protein (BRTP) values, and extracts from soils were compared using BRTP, percentage C and C weight. No difference among extractants was detected for AM fungal isolates or across soils. The residual glomalin across soils for extractants contained the following percentages of the total BRTP: pyrophosphate, 14%; borate, 17%; and citrate, 22%. Comparisons among individual soils indicated that pyrophosphate extracted significantly more BRTP (10-53%) than borate or citrate in six soils and borate was equal to pyrophosphate in one soil. Extraction with borate should be compared with pyrophosphate before initiating an experiment. For routine extractions of ca. 85% of the glomalin across a variety of soils, sodium pyrophosphate appears to be equal to or better than borate and better than citrate.  相似文献   

15.
The effect of temperature on the range and rate of disappearance of four polycyclic aromatic hydrocarbons (PAHs; fluorene, anthracene, pyrene and chrysene) added as a mixture of pure compounds to two different soils (light loam and loamy sand) was investigated over 180 days in a laboratory experiment. An increase in temperature from 10 to 25 degrees C enhanced the losses of all four PAHs from both soils. The effect of temperature on the rate of PAH disappearance depended on the physico-chemical properties of the compound and of the soil. The long half-lives at lower temperatures as obtained in the laboratory tests may suggest high persistence of higher molecular weight PAHs under some field conditions.  相似文献   

16.
Scanning electron microscopy, X-ray diffractometry, X-ray absorption spectroscopy, and other means are used to investigate the effect of thermal treatment temperature, 105-1100 degrees C, on the immobilization of nickel (Ni) by the inorganic oxides of latosol. Ni is more firmly immobilized by the latosol with increasing temperature. Spectral analyses indicate that a shoulder toward the edge-jump appears in the spectra of X-ray absorption near-edge structure for the samples heated at 900 and 1100 degrees C. Moreover, the intensity of the main peak at the edge increases with higher temperature; this information indicates the distortion of the divalent nickel [Ni(II)] environment in the samples heated at 900 and 1100 degrees C. Nevertheless, the distortion is absent from the samples heated at 105 and 500 degrees C. The fact of the distortion of the Ni(II) environment suggests the occurrence of a chemical reaction between the Ni compound and the inorganic matrices of the latosol soil during the heating process at 900 and 1100 degrees C. In addition, the extended X-ray absorption fine structure results correspond well to the X-ray absorption near-edge structure results; the former are supportive of the occurrence of a distorted Ni(II) environment in the samples heated at 900 and 1100 degrees C. The wet-chemistry results show that the samples heated at 900-1100 degrees C leach less Ni than the 105-500 degrees C samples do. The change of the Ni environment is related to the observation that less Ni is leached from the samples heated at 900-1100 degrees C. Furthermore, the pore closing phenomenon is observed only in the 1100 degrees C sample; this phenomenon corresponds with the fact that the 1100 degrees C sample leaches less Ni than the 900 degrees C sample does.  相似文献   

17.
Abstract

The effects of temperatures and solar radiation on the dissipation of 14C‐p,p'‐DDT from a loam soil was studied by quantifying volatilization, mineralization and binding. The major DDT loss occurred by volatilization, which was 1.8 times more at 45oC than at ambient temperature (30°C). Mineralization of DDT slowly increased with time but it decreased slightly with increase in temperature. Binding of DDT to soil was found to be less at higher temperatures (35 and 45°C) as compared to ambient temperature. Degradation of DDT to DDE was faster at higher temperatures.

Exposure of non‐sterilized and sterilized soils treated with 14C‐DDT to sunlight in quartz and dark tubes for 6 weeks resulted in significant losses. Volatilization and mineralization in quartz tubes were more as compared to dark tubes. The volatilized organics from the quartz tubes contained larger amounts of p,p'‐DDE than the dark tubes. Further, higher rates of volatilization were found in non‐sterilized soils than in sterilized soils. The results suggest that faster dissipation of DDT from soil under local conditions relates predominantly to increased volatilization as influenced by high temperature and intense solar radiation.  相似文献   

18.
Different extractable zinc fractions and the ecotoxicity of zinc in Enchytraeus albidus were assessed using freshly spiked artificial soils and spiked soils which had been aged for 8 weeks. Standard artificial Organization for Economic Cooperation and Development (OECD)-soils were aged in four different ways: (1) storing at 20 degrees C; (2) percolation followed by storing at 20 degrees C; (3) alternately heating at 60 degrees C and storing at 20 degrees C; and (4) alternately freezing at -20 degrees C and storing at 20 degrees C. Ageing had no clear influence on the pore water concentration, the water soluble and the calcium chloride extractable fraction of zinc in the artificial soils. Similarly, the 21d LC50 and the 42d EC50(reproduction) for E. albidus were not influenced by the different treatments. This absence of zinc fixation in the artificial soil during ageing was probably due to the use of kaolinite clay in OECD-soil.  相似文献   

19.
In this study, high-solids anaerobic digestion of thermally pretreated wastewater solids (THD) was compared with conventional mesophilic anaerobic digestion (MAD). Operational conditions, such as pretreatment temperature (150 to 170 degrees C), solids retention time (15 to 20 days), and digestion temperature (37 to 42 degrees C), were varied for the seven THD systems operated. Volatile solids reduction (VSR) by THD ranged from 56 to 62%, compared with approximately 50% for MAD. Higher VSR contributed to 24 to 59% increased biogas production (m3/kg VSR-d) from THD relative to MAD. The high-solids conditions of the THD feed resulted in high total ammonia-nitrogen (proportional to solids loading) and total alkalinity concentrations in excess of 14 g/L as calcium carbonate (CaCO3). Increased pH in THD reactors caused 5 to 8 times more un-ionized ammonia to be present than in MAD, and this likely led to inhibition of aceticlastic methanogens, resulting in accumulation of residual volatile fatty acids between 2 and 6 g/L as acetic acid. The THD produced biosolids cake that possessed low organic sulfur-based biosolids odor and dewatered to between 33 and 39% total solids. Dual conditioning with cationic polymer and ferric chloride was shown to be an effective strategy for mitigating dissolved organic nitrogen and UV-quenching compounds in the return stream following centrifugal dewatering of THD biosolids.  相似文献   

20.
The persistence of fenamiphos (nematicide) in five soils collected from different geographical regions such as Australia, Ecuador and India under three temperature regimes (18, 25 and 37 degrees C) simulating typical environmental conditions was studied. The effect of soil properties (soil pH, temperature and microbial biomass) on the degradation of fenamiphos was determined. The rate of degradation increased with increase in temperature. Fenamiphos degradation was higher at 37 degrees C than at 25 and 18 degrees C (except under alkaline pH). The degradation pathway differed in different soils. Fenamiphos sulfoxide (FSO) was identified as the major degradation product in all the soils. Fenamiphos sulfone (FSO2), and the corresponding phenols: fenamiphos phenol (FP), fenamiphos sulfoxide phenol (FSOP) and fenamiphos sulfone phenol (FSO2P) were also detected. The degradation of fenamiphos was faster in the alkaline soils, followed by neutral and acidic soils. Under sterile conditions, the dissipation of the pesticide was slower than in the non-sterile soils suggesting microbial role in the pesticide degradation. The generation of new knowledge on fenamiphos degradation patterns under different environmental conditions is important to achieve better pesticide risk management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号