首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
复合式生物除臭反应器处理城市污水处理厂恶臭气体   总被引:4,自引:0,他引:4  
采用复合式生物除臭反应器处理北京某城市污水处理厂污泥浓缩池和脱水间散发的恶臭气体,研究了反应器对恶臭气体的净化效果和微生物悬浮生长区与附着生长区内的生物特性及对恶臭污染物的去除能力。该污水处理厂的恶臭气体中主要发臭物质为硫化氢和氨,除臭反应器的运行结果表明,在设备稳定运行期间,进气中硫化氢和氨的浓度分别为0.21~22.61 mg/m3和0.1~0.5 mg/m3,而出气中硫化氢浓度在0~0.06 mg/m3,氨浓度为0~0.02 mg/m3。对反应器内部测试表明,微生物悬浮生长区和附着生长区对硫化氢和氨都有一定的去除,但去除机理不同。硫化氢主要被附着生长区的嗜酸性硫细菌生物氧化,少量硫化氢在悬浮区溶于水被中性硫细菌氧化;氨主要在悬浮区靠生物硝化作用去除,少部分氨在附着区被去除,且多因化学中和作用转移到填料所含的水中。  相似文献   

2.
太湖水体附着细菌和浮游细菌的丰度与分布特征   总被引:3,自引:0,他引:3  
为了探讨太湖水体附着细菌及浮游细菌丰度的变化规律,明确细菌丰度与环境因子的关系,应用荧光显微技术对太湖4个湖区细菌丰度及分布特征进行了研究,并探讨了其与总氮(TN)、总磷(TP)、叶绿素a(Chla)、总悬浮颗粒物(TSS)等环境因子之间的关系.结果表明,太湖水体中附着细菌占优势,占总细菌的65%(总细菌平均值为6.53×106cells/mL,附着细菌平均值为4.25×106 cells/mL,浮游细菌平均值为2.28 × 106 cells/mL);附着细菌与浮游细菌数丰度具有相似的时空分布规律,附着细菌与浮游细菌丰度都是河口区(10#)最高,其次梅梁湾(3 #)、湖心区(8#)和东太湖(24#)较低;春夏季高,秋冬季低;水温、TP对太湖水体中附着细菌及附浮游细菌的丰度影响比较大,它们与水体中附着细菌丰度及附浮游细菌均呈显著的正相关(p<0.05).太湖不同湖区附着细菌及浮游细菌的数量空间差异是由太湖不同湖区生态环境的异质性引起的.  相似文献   

3.
聚丙烯酰胺对活性污泥特性的影响研究   总被引:1,自引:0,他引:1  
高分子混凝剂PAM投加是强化污泥造粒的有效方法,但PAM的投加对活性污泥中微生物群落以及对其生化降解性能的影响尚缺乏系统性研究。为此,通过实验室小型实验,在SBR中连续投加PAM,运用FISH等微生物检测技术,研究了PAM对活性污泥的影响。在PAM投量为3 mg/L的条件下,反应器中活性污泥的生长过程与对照反应器没有根本性差别,且PAM投加后MLSS浓度和单位重量污泥的生物量均有一定增大,污泥的沉降性能也得到改善。FISH检测的结果表明,与对照反应器相比,总细菌、亚硝化菌、硝化菌的个数分别由9.1×105、1.8×105和1.1×105CFU/mL增长到1.0×106、2.0×105和1.2×105CFU/mL,说明PAM没有对各种菌落的生长产生不利影响。连续运行80 d的结果也表明,投加PAM的反应器中COD和氨氮的去除均有所改善。  相似文献   

4.
夏璐  刘芳  薛松  常新  杨飞  殷晓晨  韩笑 《环境工程学报》2011,5(10):2215-2220
为了解决循环冷却水系统中生物粘泥大量滋生的问题,设计实验,考察了一定浓度的复合酶制剂与常规杀菌剂复配使用对生物粘泥的处理效果。研究结果表明,在酶制剂的辅助下,杀菌剂苯扎溴胺对生物粘泥的作用效果明显增加。180 mg/L是苯扎溴胺与酶复配的最佳浓度;酶与醋酸氯已定复配后对生物粘泥的杀菌效果有所增高,80 mg/L是醋酸氯...  相似文献   

5.
微生物燃料电池(MFCs)去除废水中有机物已经进行了大量研究,然而MFCs去除营养盐的能力较弱是将来产业化的障碍之一。研究了以铁锰氧化细菌为催化剂的生物阴极稳定产电的同时实现生物硝化反应的可行性以及其影响因素,并对生物阴极中的铁锰氧化细菌以及硝化细菌进行了计数。以铁锰氧化细菌为催化剂的生物阴极MFCs的启动时间为150~200h,运行稳定时,最高电压达600 mV。研究表明,该生物阴极在稳定产电的同时实现了生物硝化反应,其NO3--N的生成速率为0.792mg/(L.h),NO2--N最高质量浓度为1.56mg/L;阴极进水中NH4+-N以及DO浓度均是重要影响因素;对生物阴极中的铁锰氧化细菌以及硝化细菌计数结果表明,铁锰氧化细菌为7.5×106 MPN/mL,硝化细菌为9.3×105 MPN/mL。  相似文献   

6.
附着生活型轮虫又称蛭形轮虫是污水生物处理中有益的后生动物。宿轮虫作为一种典型的蛭形轮虫,对其捕食特性的研究旨在建立宿轮虫的培养系,同时为在生物处理池中创造有利于宿轮虫大量生长的条件提供依据。实验通过选择营养较高且经济易得的小麦面粉代替细菌制成悬浮液作为食物用于培养宿轮虫,以得到宿轮虫的捕食特性。结果表明,悬浮颗粒的粒径是宿轮虫选择食物的重要指标,悬浮颗粒的粒径为2.5 μm时其种群增长最快,粒径小于10 μm时其能正常生长。实验结果不仅证明了宿轮虫能够去除污水中不能以自由沉降形式去除的悬浮颗粒,同时为宿轮虫的深入研究奠定了基础。  相似文献   

7.
玉米浸泡液制备苏云金杆菌生物杀虫剂的影响因素研究   总被引:2,自引:0,他引:2  
以玉米淀粉生产过程中的浸泡液为培养基,摇瓶发酵培养苏云金杆菌生物杀虫剂,通过一系列单因子试验,考察了不同培养条件(种子液的种龄、接种量、浸泡液的含固率、初始pH值、摇床转速、发酵温度及发酵时间)对苏云金杆菌在玉米浸泡液中的生长(菌数增长与芽孢形成)以及发酵液的生物毒效的影响.研究表明,在最佳摇瓶培养条件(种子液种龄10 h,接种量2%,浸泡液含固量3%,初始pH值7.0~7.5,摇床转速200 r/min,发酵温度30℃)下发酵48 h,活菌数和活芽孢数分别可达到7.9×108 CFU/mL和5.5×108 CFU/mL,毒力效价为698.0 IU/μL.本试验可为生物农药的工业化生产提供实用参数.  相似文献   

8.
电气石自发电极性对溶液pH和亚硝化胞菌生长影响研究   总被引:1,自引:0,他引:1  
电气石具有自发电极性,利用傅里叶变换红外光谱分析不同煅烧温度处理下电气石的变化,研究并探讨电气石自发电极性对溶液pH的影响;并借助微生物检测手段,研究电气石自发电极性对微生物生长的影响.结果表明,电气石能调节溶液pH至弱碱性,煅烧温度为800℃时,由于电气石晶胞体积的缩小,电极性增强,pH显著上升(9.8);煅烧温度为1 000℃时,BO3原子团振动峰消失,羟基振动峰和Si-O-Si对称伸缩振动峰强度明显减弱,自发电极性消失,不再具有调节pH的作用.电气石可明显促进亚硝化细菌生长繁殖,缩短细菌适应期,提前进入稳定期,大幅增加细菌数量,5d后投加电气石组中亚硝化单胞菌数量为9.66×108个/mL,远多于对照组中亚硝化单胞菌的数量(8.04×10 7个/mL).  相似文献   

9.
Fenton氧化技术处理稠油污染土壤   总被引:2,自引:0,他引:2  
利用Fenton氧化技术对稠油污染土壤进行氧化处理,分析对后续微生物修复的促进作用。向1 000 g石油类含量为8%的稠油污染土壤中加入10.0 mL 18 mmol/L Fe2+溶液与10.0 mL 30%H2O2,反应时间为2 h。氧化处理后土壤中石油烃的总去除率可达到31.38%,胶质去除率为45.22%,沥青质去除率为51.26%,胶质的分子量由1 841下降到1 472,沥青质的分子量由5 831下降到5 073。Fenton氧化可使土壤酶活、各类微生物的数量及呼吸强度有不同程度的下降,但在氧化后30 d内,土壤各类微生物数量都超过了原有水平,其中细菌数量最高达到9.84×105CFU/g,是氧化前的数量的1.57倍。以上实验结果表明,Fenton氧化可以有效去除土壤中胶质和沥青质,并且使土壤中微生物的生长速率加快。因此,Fenton氧化能够促进后续的微生物修复。  相似文献   

10.
为了考察UV/H_2O_2-活性炭过滤对水体中消毒副产物和条件致病菌的控制效果,采用原水-加氯、原水-活性炭过滤-加氯以及原水-UV/H_2O_2-活性炭过滤-加氯消毒进行了对比研究。对不同处理出水中溶解性有机碳(DOC)、生物可降解有机碳(BDOC)、有机物不同结构组成、消毒副产物、总细菌16S r RNA、三磷酸腺苷(ATP)及条件致病菌等相关指标进行测定分析。结果表明,UV/H_2O_2-活性炭过滤通过去除有机物中富里酸和腐殖酸类物质可以有效控制DOC浓度和后续消毒过程中消毒副产物三卤甲烷和卤乙酸类物质特别是三氯甲烷、二氯乙酸和三氯乙酸的生成。另外,UV/H_2O_2高级氧化也可以有效灭活颗粒黏附态和自由悬浮态的微生物,而UV/H_2O_2-活性炭过滤可以很好地控制BDOC浓度,再通过后续加氯消毒后微生物再生长能力弱,微生物活性也得到有效抑制,该工艺可以很好地控制微生物包括条件致病菌嗜肺军团菌和鸟分枝杆菌的生长。UV/H_2O_2-活性炭过滤可以很好地控制后续加氯消毒过程中消毒副产物的生成和条件致病菌的生长,有一定的应用前景。  相似文献   

11.
A review of biofouling and its control in membrane separation bioreactors.   总被引:5,自引:0,他引:5  
Membrane separation technology is increasingly becoming an important innovation in biological wastewater treatment. Biofouling of the membrane is a major factor affecting the efficient and economic operation of membrane separation bioreactors (MBRs). This review summarizes the state-of-the-art progress in understanding the mechanisms and factors affecting membrane biofouling and the strategies for biofouling control. Biofouling mechanisms include the adsorption of soluble and suspended extracellular polymers on membrane surfaces and in membrane pores, the clogging of membrane pore structure by fine colloidal particles and cell debris, and the adhesion and deposition of sludge cake on membrane surfaces. Design and operating conditions of membrane modules and materials, hydrodynamic conditions in MBRs, process and environmental conditions of activated sludge systems, and the physicochemical properties of the wastewater are the dominant factors determining membrane biofouling. Current strategies to control biofouling include periodic relaxation, backwashing, chemical cleaning, and possible manipulation of hydrodynamic conditions and sludge properties. Achieving full integration of MBRs in wastewater treatment technology requires further research and development. Fundamental information on the bacteria, colloid, and membrane interaction, developed through multimethod and multiscale approaches, is particularly needed.  相似文献   

12.
采用海藻酸钠—壳聚糖—活性炭(SA-CA-PAC)生物微胶囊包埋优势降解菌用于生物流化床处理邻二氯苯废水。比较了微囊化菌和悬浮菌对废水的降解效果,同时考察了初始浓度、接种量、pH值、温度和曝气量对降解率的影响。结果表明,微囊化菌比悬浮菌拥有更适宜的生长环境,具有更好的pH稳定性和热稳定性。微囊化菌的降解效果优于悬浮菌,处理150 mg/L的邻二氯苯废水的最佳接种量为10%,最适pH为7.5,最适温度为30℃。  相似文献   

13.
Booij K  van Bommel R  Mets A  Dekker R 《Chemosphere》2006,65(11):2485-2492
The effects of water flow rate and antifouling agents on the extent of biofouling and on the uptake of non-polar organic contaminants by semipermeable membrane devices (SPMDs) were studied during four field experiments in the Western Wadden Sea. Biofouling densities on the sampler surface ranged from 0.3 to 16 g dry weight dm−2. Water sampling rates were estimated from the dissipation rates of performance reference compounds (PRCs). The antifouling agents Irgarol and capsaicin (33 mg per ml triolein) had no noticeable effect on the extent of fouling, and caused only a 5–10% increase in the absorbed amounts. Enhanced flow rates had only a minimal effect on the amount of biofouling, but caused the water sampling rates to increase by a factor of 1.2–2. Increases in PRC-derived sampling rates were reflected by increases in the absorbed amounts for compounds that were in the linear uptake stage of the sampling process. The results imply (1) that extreme biofouling does not always result in reduced sampling rates, (2) that extreme biofouling does not preclude the existence of flow effects on the sampling rates, and (3) that differences in uptake rates are quantitatively reflected by the dissipation rates of PRCs.  相似文献   

14.
A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18 % in sludge treated with citric acid and 10 % in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3 %. Solubilization was 10.9 % in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2 %, and that of the raw sludge, which was just 4.8 %. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4 % whereas that in the control reactor was 15.3 %. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.  相似文献   

15.
Six laboratory-scale wastewater treatment ponds were filled with sediment and water obtained from a reference pond (a wastewater treatment plant located in a rural environment at Montel-de-Gelat, Puy-de-D?me, France). They were kept at 20 degrees C, with alternative light and dark periods (12 h-12 h), and fed with raw effluent supplied weekly. Three of them were treated with Diuron (dissolved in DMSO) at a final concentration 10 mg/l, while the other three received only DMSO. Physico-chemical parameters, total bacteria, cultivable bacteria, and Aeromonas spp. were measured periodically until 41 days after the Diuron contamination. Total bacteria were treated with 4,6-diamidino 2-phenylindole (DAPI) and counted by epifluoroscence microscopy. The cultivable bacteria were quantified on plate count agar medium and Aeromonas spp. using colony hybridization. In the contaminated pilots, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), volatile suspended solids (VSS), ammonium, phosphorus, and bacteria increased, but dissolved oxygen decreased. The abundance of total bacteria, cultivable bacteria (multiplied by 30), and Aeromonas spp. increased for two weeks after Diuron introduction, reverting to initial values three weeks later. The percentage of cultivable bacteria relative to total bacteria was 0.2% in controls and 1.2% in treated pilots, while the percentage of Aeromonas spp. relative to cultivable bacteria decreased from 6-10% to 2%. Our results suggest that Diuron, which acts on the photosystem II of phototrophs, supports the development of cultivable bacteria through new carbon sources derived from the decomposition of photosynthetic micro-organisms, but does not specifically support Aeromonas spp.  相似文献   

16.
Xia XH  Yang ZF  Huang GH  Zhang XQ  Yu H  Rong X 《Chemosphere》2004,57(8):1017-1029
In this research, the mechanism regarding the effects of suspended solids on nitrification in freshwater systems with high solid contents was examined. Experimental studies were conducted for natural water of the Yellow River under laboratory conditions. Nitrification kinetics was investigated in water systems with various levels of suspended-solid contents. The associated mechanisms were analyzed through investigation of the adsorption-desorption of ammonium nitrogen, the process of bacteria growth, and the feature of nitrification kinetics. The results indicated that the presence of suspended solids could accelerate the nitrification process. The nitrification rate would increase non-linearly with the increase of suspended-solid content. When the initial concentration of ammonia nitrogen was 12.70 mg/l in the water system, the ratios of half-time duration for nitrification would be 1.88:1.23:1 under suspended-solid contents of 0, 1.84 and 5.00 g/l, respectively. When the initial concentration of ammonia nitrogen was around 1.0 mg/l in the water system, the nitrification rates in systems with suspended-solid contents of 1.81 and 3.42 g/l would then be approximately 9 and 12 times that without suspended solids, respectively. The populations of nitrifying bacteria would rise with increasing suspended-solid content. The existence of suspended solids would increase the contact chances between bacteria and nitrogen, resulting in accelerated nitrification processes; this was manifested by the increased K(4) (tau(max)/K(S)) along with the raised suspended-solid contents while fitting nitrification kinetics with the growth-based logistic model. Since the amount of ammonium nitrogen adsorbed on suspended-solid surface was non-linearly proportional to the suspended-solid content, the nitrification rate was also non-linearly proportional to the suspended-solid content.  相似文献   

17.
Hu JY  Song LF  Ong SL  Phua ET  Ng WJ 《Chemosphere》2005,59(1):127-133
Biofouling control is considered as a major challenge in operating membrane systems. A lab-scale RO system was setup at a local water reclamation plant to study the feasibility of using biofiltration as a pretreatment process to control the biofouling. The biological activity in the RO system (feed, product, reject streams) was tested using the standard serial dilution plating technique. Operational parameters such as differential pressure (DP) and permeate flowrate of the system were also monitored. Effects of biofilter on AOC and DOC removals were investigated. Biofiltration was found to be a viable way of assimilable organic carbon (AOC) and dissolved organic carbon (DOC) removals, with removal efficiencies of 40-49% and 35-45% at an empty bed contact time (EBCT) of 30 min. It was also found that using the biofiltration as a pretreatment reduced the rate of biofouling. It took only about 72 h for biofouling to have a significant impact on the performance of the RO membrane, when the system was operated without using biofiltration as pretreatment. There was, however, a five times increase in operational length to more than 300 h when biofiltration was used. This study presented the suitability of the biofilter as an economical and simple way of biofouling control for RO membrane.  相似文献   

18.
Biofilms harboring simultaneously anoxygenic and oxygenic phototrophic bacteria, diazotrophic bacteria, and hydrocarbon-utilizing bacteria were established on glass slides suspended in pristine and oily seawater. Via denaturing gradient gel electrophoresis analysis on PCR-amplified rRNA gene sequence fragments from the extracted DNA from biofilms, followed by band amplification, biofilm composition was determined. The biofilms contained anoxygenic phototrophs belonging to alphaproteobacteria; pico- and filamentous cyanobacteria (oxygenic phototrophs); two species of the diazotroph Azospirillum; and two hydrocarbon-utilizing gammaproteobacterial genera, Cycloclasticus and Oleibacter. The coexistence of all these microbial taxa with different physiologies in the biofilm makes the whole community nutritionally self-sufficient and adequately aerated, a condition quite suitable for the microbial biodegradation of aquatic pollutant hydrocarbons.  相似文献   

19.
Tributyltin (TBT) is organotin compound that is toxic to aquatic life ranging from bacteria to mammals. This study examined the concentration of TBT in sediment from and near the Mekong River and the distribution of TBT-resistant bacteria. TBT concentrations ranged from <2.4 to 2.4 ng/g (dry wt) in river sediment and <2.4-15 ng g(-1) (dry wt) in harbor sediment. Viable count of total bacteria ranged from 2.0 x 10(4) to 1.4 x 10(7)cfu/g, and counts of TBT-resistant bacteria ranged <1.0 x 10(2) to 2.5 x 10(4)cfu/g. The estimated occurrence rate of TBT-resistant bacteria ranged from <0.01 to 34% and was highest in upstream sites in Cambodia. The occurrences of TBT in the sediment and of TBT-resistant bacteria were unrelated, and chemicals other than TBT might induce TBT resistance. TBT-resistant bacteria were more abundant in the dry season than in the rainy season. Differences in the selection process of TBT-resistant bacteria between dry and rainy seasons were examined using an advection-diffusion model of a suspended solid (SS) that conveys chemicals. The estimated dilution-diffusion time over a distance of 120 km downstream from a release site was 20 days during dry season and 5 days during rainy season, suggesting that bacteria at the sediment surface could be exposed to SS for longer periods during dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号