首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background, aim, and scope  

Heavy metals such as lead are well known to cause harmful health effects. Especially children are particularly susceptible to increased levels of lead in their blood. It is also a fact that lead concentration is increasing in the environment due to increased anthropogenic activity. The risk of heavy metal contamination is pronounced in the environment adjacent to large industrial complexes. In a combined case study, the environmental pollution by heavy metals was related to children’s health in the vicinity of an industrial area located 4 km south-east from Bucharest about 2 km east from the nearest town—Pantelimon. This site includes companies processing different, nonferrous solid wastes for recovery of heavy metals and producing different nonferrous alloys and lead batteries. In this paper, mainly the results of environmental sampling and analyses are summarized.  相似文献   

2.
Thallium in the hydrosphere of south west England   总被引:1,自引:0,他引:1  
Thallium is a highly toxic metal whose environmental concentrations, distributions and behaviour are not well understood. In the present study we measure the concentrations of Tl in filtered and unfiltered samples of rain, tap, river, estuarine and waste waters collected from south west England. Dissolved Tl was lowest (<20 ng L−1) in tap water, rain water, treated sewage and landfill effluents, estuarine waters, and rivers draining catchments of sandstones and shales. Concentrations up to about 450 ng L−1 were observed in rivers whose catchments are partly mineralized and where metal mining was historically important, and the highest concentration (∼1400 ng L−1) was measured in water abstracted directly from an abandoned mine. Compared with other trace metals measured (e.g. As, Cd, Co, Cr, Cu, Ni, Pb, Zn), Tl has a low affinity for suspended particles and undergoes little removal by conventional (hydroxide precipitation) treatment of mine water.  相似文献   

3.
Trace metals were assessed in atmospheric particulates at Burnaby Lake, in the greater Vancouver area of British Columbia to assess concentrations, particle size distributions and deposition rates to an urban watershed. Week-long samples were collected over a period of 18 weeks in 1995 using a 13 stage low pressure impactor (LPI). Samples were analysed using inductively coupled plasma atomic emission spectroscopy (ICP). Aluminum, boron, calcium, iron, magnesium, manganese, sodium and strontium had a similar time series pattern and particle size distribution. For these metals, maximum concentrations occurred during weeks of low precipitation and exhibited a large peak in mid June. Their particle size distribution was mostly dominated by a large peak between 1.7–18.4 μm with a secondary peak at <0.08 μm. Metal concentrations were generally one to three orders of magnitude higher than those measured in a rural location 100 km away from Burnaby Lake but similar to those measured in urban Taipei, Taiwan. Concentrations of the highly toxic metals, arsenic, cadmium and lead were within current air quality guidelines, however boron exceeded the Ontario Ministry of Environment ambient air quality standard in two of the 16 samples. Deposition velocities ranged between 0.22 and 13 cm s−1 with the largest values corresponding to the coarse particle mode. Mean deposition rates ranged between 4.0 μg m−2 d−1 and 650 mg m−2 d−1. Depending on the metal, yearly loadings to the watershed ranged from 90 kg to several thousand tonnes. Calcium, aluminum, boron and magnesium had the highest metal loadings to the watershed. Manganese also had relatively high loadings, a reflection of the high traffic density in the area. The relatively high metal deposition rates indicate that metal contribution from atmospheric sources may represent a significant portion of the total metal load to the Burnaby Lake watershed.  相似文献   

4.
5.
The size distribution of metals in aerosols has been studied in 12 areas of the city of Seville. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into six-size ranges. Forty-one samples were collected in spring 1996. Each filter was extracted with a mixture of nitric and percloric acids. The acid solutions of the samples were analysed in six-particle fractions by inductively coupled plasma atomic emission spectrometry (ICP-AES). The impactor stage fractionation of particles shows a typical bimodal distributions, one corresponding to the fine mode below 1 μm (55%), and the other to the coarse mode around 10 μm (32%). With regard to the size distribution of metals, we concluded that potentially toxic metals, such as nickel, lead and cadmium are mainly accumulated in the smaller particles, with percentages of 72.6, 69.4 and 63.8%, respectively. Lead have a concentration of 63.7 ng m−3, more than copper and manganese (26.7 and 16.5 ng m−3) and above all more than nickel, cobalt and cadmium (1.97, 0.54 and 0.32 ng m−3).  相似文献   

6.
A historical input of trace metals into tidal marshes fringing the river Scheldt may be a cause for concern. Nevertheless, the specific physicochemical form, rather than the total concentration, determines the ecotoxicological risk of metals in the soil. In this study the effect of tidal regime on the distribution of trace metals in different compartments of the soil was investigated. As, Cd, Cu and Zn concentrations in sediment, pore water and in roots were determined along a depth profile. Total sediment metal concentrations were similar at different sites, reflecting pollution history. Pore water metal concentrations were generally higher under less flooded conditions (mean is (2.32 ± 0.08) × 10−3 mg Cd L−1 and (1.53 ± 0.03) × 10−3 mg Cd L−1). Metal concentrations associated with roots (mean is 202.47 ± 2.83 mg Cd kg−1 and 69.39 ± 0.99 mg Cd kg−1) were up to 10 times higher than sediment (mean is 20.48 ± 0.19 mg Cd kg−1 and 20.42 ± 0.21 mg Cd kg−1) metal concentrations and higher under dryer conditions. Despite high metal concentrations associated with roots, the major part of the metals in the marsh soil is still associated with the sediment as the overall biomass of roots is small compared to the sediment.  相似文献   

7.

The phytoaccumulation ability of duckweed Spirodela polyrhiza on manganese (Mn) and chromium (Cr) was assessed by exposing the plant to various concentrations of single or dual metals (5–70 mg L?1 Mn, 2–12 mg L?1 Cr(VI)) under laboratory conditions. The results showed that S. polyrhiza can tolerate Mn at high concentrations of up to 70 mg L?1, and its growth rate was barely affected by Mn. The effects of Cr on S. polyrhiza growth were dose-dependent, and the growth was completely inhibited in the presence of 12 mg L?1 Cr. Analysis of metal content in the plant biomass revealed a high accumulation of Mn (up to 15.75 mg per g of duckweed dry weight). The Cr bioaccumulation (from below detection limit to 2.85 mg Cr (11.84 mg Cr2O7 2?) per g of duckweed dry weight) increased with cultivation time and metal concentration in the medium. Further study with the concurrence of Mn and Cr showed increased toxicity to plant growth and photosynthesis. The metal accumulations in the dual metal treatments were also significantly decreased as compared to the single metal treatments. Nevertheless, the phytoaccumulation of these two metals in S. polyrhiza in the dual metal treatments were still comparable to or higher than in previous reports. Thus, it was concluded that duckweed S. polyrhiza has the potential to be used as a phytoremediator in aquatic environments for Mn and Cr removal.

  相似文献   

8.
Two common sorrel (Rumex acetosa) accessions, one from a Zn-Pb contaminated site (CS accession) and the other from an uncontaminated site (UCS accession), were hydroponically exposed to a mixture of heavy metals (Pb2+ + Zn2+ + Cd2+) with and without EDTA at an equimolar rate. The metallicolous CS accession showed a higher tolerance to metal treatment in the absence of the chelating agent, whereas the UCS accession was especially tolerant to EDTA treatment alone. Combination of metal and EDTA treatment resulted in a higher Pb accumulation in shoots of both accessions although plants hardly showed phytotoxic symptoms. Cd and Zn uptake was not augmented by EDTA addition to the polymetallic medium. Chelant-assisted Pb accumulation was 70% higher in the CS accession than in the UCS accession, despite the fact that the former accession evapotranspired less water than the UCS accession. These results support the existence of a non-selective apoplastic transport of metal chelates by R. acetosa roots, not related to transpiration stream.  相似文献   

9.
Long-term applications of small concentrations of surfactants in soil via wastewater irrigation or pesticide application may enhance trace metal solubility. Mechanisms by which anionic surfactants (Aerosol 22, SDS and Biopower) affect trace metal solubility were assessed using batch, incubation and column experiments. In batch experiments on seven soils, the concentrations of Cu, Cd, Ni and Zn in the dissolved fraction of soils increased up to 100-fold at the high application rates, but increased less than 1.5-fold below the critical micelle concentration. Dissolved metal concentrations were less than 20% affected by surfactants in long-term incubations (70 days) up to the largest dose of 200 mg C kg−1 soil. Leaching soil columns with A22 (100-1000 mg C L−1) under unsaturated conditions increased trace metal concentrations in the leachates 2-4 fold over the control. Correlation analysis and speciation modelling showed that the increased solubility of metals upon surfactant application was more related to the solubilisation of soil organic matter from soil than to complexation of the metals with the surfactant. Organic matter from soil was solubilised in response to a decrease of solution Ca2+ as a result of Ca-surfactant precipitation. At environmentally relevant concentrations, surfactant application is unlikely to have a significant effect on trace metal mobility.  相似文献   

10.
11.

In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L−1, Cr 4 μg L−1, Ni 25 μg L−1, and Zn 30 μg L−1; of treatment 2 (T2) were Pb 70 μg L−1, Cr 70 μg L−1, Ni 70 μg L−1, and Zn 70 μg L−1; and of treatment 3 (T3) were Pb 1000 μg L−1, Cr 1000 μg L−1, Ni 500 μg L−1, and Zn 100 μg L−1, and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.

  相似文献   

12.
ESTROM—a Romanian–Swiss research programme   总被引:1,自引:0,他引:1  
Background, aim, and scope  Composting is an effective treatment process to realize sludge land application. However, nitrogen loss could result in the reduction of nutrient value of the compost products and the stabilization effect of composting on heavy metal concentration and mobility in sludge has been shown to be very limited. Materials and methods  Laboratory-scale experiments were carried out to investigate the effects of bamboo charcoal (BC) on nitrogen conservation and mobility of Cu and Zn during sludge composting. Results  The result indicated that the incorporation of BC into the sludge composting material could significantly reduce nitrogen loss. With 9% BC amendment, total nitrogen loss at the end of composting decreased 64.1% compared with no BC amendment (control treatment). Mobility of Cu and Zn in the sludge may also have been lessened, based on the decline in diethylenetriaminepentaacetic acid-extractable Cu and Zn contents of composted sludge by 44.4% and 19.3%, respectively, compared to metal extractability in the original material. Discussion  Ammonia adsorption capability of BC might be the main reason for the retention of nitrogen in sludge composting materials. Decrease of extractable Cu2+ and Zn2+ in the composting material mainly resulted from the adsorption of both metals by BC. Conclusions  Incorporation of BC into composting material could significantly lessen the total nitrogen loss during sludge composting. Mobility of heavy metals in the sludge composting material could also be reduced by the addition of BC. Recommendations and perspectives  Bamboo charcoal could be an effective amendment for nitrogen conservation and heavy metal stabilization in sludge composts. Further research into the effect of BC-amended sludge compost material on soil properties, bioavailability of heavy metals, and nutrient turnover in soil needs to be carried out prior to the application of BC-sludge compost in agriculture.  相似文献   

13.
The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg−1 and 362 mgCu kg−1) and Pb/Zn mine (4550 mgPb kg−1 and 908 mgZn kg−1) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element.  相似文献   

14.
Gu HH  Qiu H  Tian T  Zhan SS  Deng TH  Chaney RL  Wang SZ  Tang YT  Morel JL  Qiu RL 《Chemosphere》2011,83(9):1234-1240
The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40 g kg−1) and steel slag (3 and 6 g kg−1) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils.  相似文献   

15.
16.
Environmental heavy metal contamination is a case of concern for both animal and human health. Studying the fate of metals in plant or animal tissues may provide information on pollution. In the present study, we investigated the possibility to follow the biological fate of chromium and platinum uptake in common garden snails (Helix aspersa), typically accumulating high concentrations of metals from their environment. Chromium and platinum were administered orally to snails in 5 groups (n = 25/group): control, food contaminated by ca. 2.5 μg g?1 and 19 μg g?1 chromium and 2.5 μg g?1 and 25 μg g?1 platinum, for 8 weeks. Following exposure, surviving snails were sacrificed, shell and remaining tissue investigated by ICP-MS, and shell, midgut gland and mantle by nano-secondary ion mass-spectrometry (Nano-SIMS). 12C14N-normalized platinum and 40Ca-normalized chromium measurements indicated highest enrichments in cellular vesicles of the midgut gland, and lower concentrations in mantle and shell, with significantly higher platinum and chromium concentrations in the 2 exposure groups vs. control (P < 0.05), with somewhat differing distribution patterns for chromium and platinum. Comparable results were obtained by ICP-MS, with both chromium and platinum fed snails showing drastically elevated concentrations of metals in shell (up to 78 and 122 μg g?1 dw platinum and chromium, respectively) and in other tissues (up to 200 and 1125 μg g?1 dw platinum and chromium, respectively). Nano-SIMS allowed for semi-quantitative comparison of metal fate in snail tissues, making this an interesting technique for future studies in the area of environmental pollution.  相似文献   

17.

In this study, we analyzed the concentrations of metals in sediments and Corbicula fluminea in China’s Dongting Lake to assess the suitability of C. fluminea as an effective biomonitor of metal contamination in sediments and food safety. We analyzed the biota-accumulation capacity by calculating the biota-sediment accumulation factor (BSAF) and assessed the potential human health risk of metals exposure via consumption of C. fluminea using the target hazard quotient (THQ) and total target hazard quotient (TTHQ). The results showed that the average concentrations of As (31.93 mg kg−1), Cd (5.54 mg kg−1), Cr (105.50 mg kg−1), Cu (32.53 mg kg−1), and Zn (207.89 mg kg−1) in sediments were higher than their respective standard set by the General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. The sediment metals, which were mainly anthropogenic in origin, were at high levels and pose a relatively high ecological risk. Cadium (Cd) showed very high potential ecological risk levels and should be included in the prior pollutants list in the studied area. The mean levels of As (0.81 mg kg−1) in C. fluminea were 1.62-times higher than that set by the National Health Commission of the People’s Republic of China. BSAF values of the soft tissues of C. fluminea were between 0.05 and 2.14, with higher values for Cu (2.14), Cd (1.77), Zn (1.60), and Ni (1.27). Soft tissues of C. fluminea were able to reflect spatial differences in Sr within sediments around Dongting Lake. The results indicated that C. fluminea could be an potential biomonitor for sediment metals assessment in biomonitoring programs, especially for Cu, Cd, Zn, Ni, and Sr. The mean values for THQ and TTHQ of all the analyzed metals were below 1.0, indicating that the intake of metals via comsumption of C. fluminea does not result in an appreciable risk to human health.

  相似文献   

18.

Pakistan is an agricultural country and due to the shortage of clean water, most of the irrigated area (32,500 ha) of Pakistan was supplied with wastewater (0.876?×?109 m3/year). Concentrations of heavy metals in radish (Raphanus sativus) and turnip (Brassica rapa) taken from vegetable fields in Sargodha, Pakistan, were measured. Untreated wastewater was used persistently for a long time to irrigate these vegetable fields. A control site was selected that had a history of fresh groundwater irrigation. Mean metal concentrations were found for irrigation water, soil, and vegetables. In irrigation water, concentrations of Mo and Pb at three sites and Se at sites II and III were higher than the recommended limits. In vegetables, concentrations of Mo and Pb were above the maximum permissible limits. High bioconcentration factor was observed for Zn (12.61 in R. sativus and 11.72 in B. rapa) at site I and high pollution load index was found for Pb (3.89 in R. sativus and 3.87 in B. rapa) at site II. The differences in metal concentrations found in samples depended upon different soil nature and assimilation capacities of vegetables at different sites which in turn depended upon different environmental cues. The entrance of metal and metalloids to human body may happen through different pathways; however, the food chain is the chief route through which metals are transferred from vegetables to individuals. Health risk index observed for metals, (Mo, As, Ni, Cu, and Pb) higher than 1 indicated high risk through consumption of these vegetables at three sites.

  相似文献   

19.

A pot experiment and a leaching experiment were conducted to investigate the effects of earthworms and pig manure on heavy metals (Cd, Pb, and Zn) immobility, in vitro bioaccessibility and leachability under simulated acid rain (SAR). Results showed manure significantly increased soil organic carbon (SOC), dissolved organic carbon (DOC), available phosphorus (AP), total N, total P and pH, and decreased CaCl2-extractable metals and total heavy metals in water and SAR leachate. The addition of earthworms significantly increased AP (from 0.38 to 1.7 mg kg?1), and a downward trend in CaCl2-extractable and total leaching loss of heavy metals were observed. The combined earthworm and manure treatment decreased CaCl2-extractable Zn, Cd, and Pb. For Na4P2O7-extractable metals, Cd and Pb were decreased with increasing manure application rate. Application of earthworm alone did not contribute to the remediation of heavy metal polluted soils. Considering the effects on heavy metal immobilization and cost, the application of 6% manure was an alternative approach for treating contaminated soils. These findings provide valuable information for risk management during immobilization of heavy metals in contaminated soils.

  相似文献   

20.
1,2-Dichloroethane (1,2-DCA) is one of the most hazardous pollutant of soil and groundwater, and is produced in excess of 5.44 × 109 kg annually. Owing to their toxicity, persistence and potential for bioaccumulation, there is a growing interest in technologies for their removal. Heavy metals are known to be toxic to soil microorganisms at high concentrations and can hinder the biodegradation of organic contaminants. In this study, the inhibitory effect of heavy metals, namely; arsenic, cadmium, mercury and lead, on the aerobic biodegradation of 1,2-DCA by autochthonous microorganisms was evaluated in soil microcosm setting. The presence of heavy metals was observed to have a negative impact on the biodegradation of 1,2-DCA in both soil samples tested, with the toxic effect being more pronounced in loam soil, than in clay soil. Generally, 75 ppm As3+, 840 ppm Hg2+, and 420 ppm Pb2+ resulted in 34.24%, 40.64%, and 45.94% increase in the half live (t½) of 1,2-DCA, respectively, in loam soil, while concentrations above 127.5 ppm Cd2+, 840 ppm Hg2+ and 420 ppm of Pb2+ and less than 75 ppm As3+ was required to cause a >10% increase in the t½ of 1,2-DCA in clay soil. A dose-dependent relationship between degradation rate constant (k1) of 1,2-DCA and metal ion concentrations was observed for all the heavy metals tested, except for Hg2+. This study demonstrated that different heavy metals have different impacts on the degree of 1,2-DCA degradation. Results also suggest that the degree of inhibition is metal specific and is also dependent on several factors including; soil type, pH, moisture content and available nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号