首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
MTBE的生物降解技术   总被引:6,自引:0,他引:6  
汽油添加剂甲基叔丁基醚(MTBE)的污染在国外已引起重视。概述了目前MTBE生物降解的研究现状,着重介绍了国外对MTBE污染地下水的异位和原位生物处理方法。随着汽车的逐步普及和MTBE用量的增加,我国正在或将面临MTBE的污染。指出了开展相关研究的重要性和迫切性,初步提出了这一新课题的研究思路,为我国环境保护领域从事该项研究的人员提供参考。  相似文献   

2.
本文简要介绍了汽油添加剂MTBE对环境的污染及减少MTBE污染机理研究的进展 ,同时介绍了对我国汽油生产的影响  相似文献   

3.
本文简要介绍了汽油添加剂MTBE对环境的污染及减少MTBE污染机理研究的进展,同时介绍了对我国汽油生产的影响。  相似文献   

4.
本文简要介绍了无铅汽油添加剂MTBE的物理化学性质、环境化学行为、地下水的污染状况和对动物的潜在致癌毒理 ,并对其分析方法作了综述 ,指出了我国开展MTBE有关研究的重要性。  相似文献   

5.
本文简要介绍了无铅汽油添加剂MTBE的物理化学性质,环境化学行为,地下水的污染状况和对动物的致癌毒理,并对其分析方法作了综述,指出了我国开展MTBE有关研究的重要性.  相似文献   

6.
甲基叔丁基醚的污染治理技术研究进展   总被引:5,自引:0,他引:5  
甲基叔丁基醚(MTBE)是一种无铅汽油添加剂,其广泛使用造成了土壤和地下水污染;同时对人类有可疑致癌作用,因此成为人们关注的焦点.对近年来国外MTBE的污染治理技术研究进展进行了综述,并对主要方法进行了对比.在适宜的微生物存在条件下,MTBE的生物降解是可以发生的;植物修复技术可用于地下水和土壤污染治理;物理化学方法种类繁多,包括吸附和高级氧化等,其处理效率高成本也较高;新的处理技术如渗透性活性障壁PRB、膜分离/催化技术等也在研究之中.  相似文献   

7.
建立了地下水环境中甲基叔丁基醚(MTBE)运移过程的变系数动力学模型,并对模型进行了验证和参数灵敏度分析.模拟结果表明,地下水流速和阻滞系数对于MTBE的运移过程影响最为显著,而水动力弥散系数的影响较小,忽略其变化不会对预测地下水环境中污染物运移的环境动力学行为造成太大误差.由此得到的结论可定量研究MTBE在地下水环境中的对流.扩散特征,还可为MTBE污染地下水的预测预报、修复治理等研究提供科学依据.  相似文献   

8.
甲基叔丁基醚(MTBE)是一种常见的汽油添加剂,但汽油油箱和地下储油罐的泄漏.造成了汽油及添加剂对地下水的污染.实验分析了生物活性炭吸附工艺去除地下水中MTBE的可行性,结果表明:(1)处理高MTBE进水(模拟新污染的地下水)实验时,对椰壳活性炭(简称椰壳炭)柱,煤质活性炭(简称煤质炭)柱采用菌液循环接种法接种来自美国...  相似文献   

9.
甲基叔丁基醚(MTBE)在不同粘性土壤中的吸附特性   总被引:3,自引:0,他引:3  
土壤对有机物的吸附是污染土壤及地下水原位修复技术中的重要参数.通过静态间歇吸附实验研究了甲基叔丁基醚(MTBE)在不同粘性土壤中的吸附特性.结果表明,MTBE在粘性土壤中的吸附行为均可用线性方程很好描述,粘粒是土壤对MTBE吸附的主要影响因素,吸附常数与土壤粘粒含量呈y=4.382×10-3x-0.817 ×10-3直线关系.对不同温度下的吸附数据分析发现,粘性土壤对MTBE的平衡吸附量随温度的升高而降低,由吸附热力学推导可得等量吸附焓变△H与平衡吸附量无关,且△H<0,表明该吸附为故热过程.  相似文献   

10.
本文在调研1983年来我国有关汽车排气净化研究的文献基础上,综述了机内净化,机外净化和燃料处理三方面的研究水平与成果,着重探讨了汽车尾气催化净化技术和催化剂的研究。结合我国目前汽车工业和城市机动车污染现状,借鉴国外机动车污染控制的发展道路,提出了我国机动车污染控制技术的发展方向,并对进一步开展汽车排气净化研究提出了建议。  相似文献   

11.
Over the past decade, there has been much publicity surrounding the impact of Methyl tert -butyl ether (MTBE) on drinking water supplies in the United States. In California, the presence of MTBE in groundwater and drinking water has led to a ban on the future use of MTBE in gasoline. Other states, such as those in the northeast, are also seeking ways to reduce or eliminate the use of MTBE due to perceived threats to the environment and public health. Despite claims about the incidence of MTBE in drinking water, no comprehensive characterization has been conducted on the available drinking water monitoring data. This paper provides a detailed analysis of the MTBE drinking water data compiled by the California Department of Health Services (CDHS) from 1995 to 2000. We find that MTBE was detected in about 1.3% of all drinking water samples, 2.5% of drinking water sources, and 3.7% of drinking water systems in California over this 6-year period. Our analysis reveals that many drinking water sources are not sampled routinely for MTBE, and in those sources that appear to be affected by MTBE, the compound is not consistently detected. The majority of MTBE detections are also concentrated in several geographic areas, which contain about 9-21% of the total California population. Average detected MTBE concentrations have decreased significantly since 1995 and 1996, ranging from 5 to 15 ppb over the last 3 years depending on the outcome of interest. Of the samples in which MTBE was present above the analytical detection limit, the concentrations in approximately 73% of drinking water samples and 86% of drinking water sources and systems were below the State's primary health-based standard of 13 ppb. Our findings suggest that, although some drinking water supplies in California have been affected by MTBE, the majority of drinking water sources and systems either have not been affected at all or contain MTBE at concentrations below levels that are likely to be of health concern.  相似文献   

12.
Over the past decade, there has been much publicity surrounding the impact of Methyl tert -butyl ether (MTBE) on drinking water supplies in the United States. In California, the presence of MTBE in groundwater and drinking water has led to a ban on the future use of MTBE in gasoline. Other states, such as those in the northeast, are also seeking ways to reduce or eliminate the use of MTBE due to perceived threats to the environment and public health. Despite claims about the incidence of MTBE in drinking water, no comprehensive characterization has been conducted on the available drinking water monitoring data. This paper provides a detailed analysis of the MTBE drinking water data compiled by the California Department of Health Services (CDHS) from 1995 to 2000. We find that MTBE was detected in about 1.3% of all drinking water samples, 2.5% of drinking water sources, and 3.7% of drinking water systems in California over this 6-year period. Our analysis reveals that many drinking water sources are not sampled routinely for MTBE, and in those sources that appear to be affected by MTBE, the compound is not consistently detected. The majority of MTBE detections are also concentrated in several geographic areas, which contain about 9–21% of the total California population. Average detected MTBE concentrations have decreased significantly since 1995 and 1996, ranging from 5 to 15 ppb over the last 3 years depending on the outcome of interest. Of the samples in which MTBE was present above the analytical detection limit, the concentrations in approximately 73% of drinking water samples and 86% of drinking water sources and systems were below the State's primary health-based standard of 13 ppb. Our findings suggest that, although some drinking water supplies in California have been affected by MTBE, the majority of drinking water sources and systems either have not been affected at all or contain MTBE at concentrations below levels that are likely to be of health concern.  相似文献   

13.
MTBE, a fuel oxygenate added to gasoline in parts of the USA, appears to have imposed significant adverse impacts on groundwater. In the UK, the impacts of MTBE are not well known in part because insufficient data has been presented to allow an accurate assessment. With the recognition of urban groundwater as a potentially valuable resource due to the growing pressure on rural groundwater, there is need for pollution risks to urban groundwater to be evaluated for contaminants such as MTBE. This paper presents the application of a risk-based water management tool called Borehole Optimisation System (BOS) in the evaluation of the risk of MTBE to urban groundwater at city scale using Nottingham city as our case study. The risk model was validated by comparison of its predictions with observations of MTBE detections for about 1100 boreholes in England and Wales. The output of the risk analysis was the production of a map showing the predicted MTBE concentration at all locations in the city. The results indicate that MTBE does not currently pose a major risk to urban groundwater although there may be a potential risk to groundwater in the southern part of the city where most industries are concentrated.  相似文献   

14.
Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE)   总被引:1,自引:0,他引:1  
Background Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 μg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Methods Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Results and Discussion Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Conclusion Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions prevail. MTBE is often recalcitrant under anaerobic conditions, at least in the presence of other carbon sources. The abiotic hydrolysis of MTBE seems to be of secondary importance (on site), but it might be possible to enhance it with catalysts. Recommendation and Outlook MTBE only seems to be recalcitrant under particular conditions. In some cases, the degradation of MTBE on contaminated sites could be supported by oxygen. Enhanced hydrolysis could also be an alternative. - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

15.
The recent controversy over the use of MTBE within gasoline to boost oxygen content and decrease carbon monoxide emissions to the atmosphere has led to a proposed phase-out of this compound by 2002. This paper is a preliminary investigation into the use of gas chromatography isotope-ratio mass spectrometry (GCIRMS) to determine both carbon and hydrogen isotopic compositions of MTBE as a means of differentiating sources of MTBE. Three pure MTBE samples were purchased from chemical distributors. Little variation of the i 13 C values were observed although the samples had isotopically distinct i -D values. Four different methods of obtaining carbon isotope ratios of neat MTBE, MTBE in gasoline, and MTBE in water are described, and the precision and accuracy of each is discussed. The carbon isotopic compositions of MTBE within 10 gasoline samples from three different areas of the United States show a wide range of carbon isotope compositions. This novel method of MTBE analysis could be valuable in forensic investigations.  相似文献   

16.
The recent controversy over the use of MTBE within gasoline to boost oxygen content and decrease carbon monoxide emissions to the atmosphere has led to a proposed phase-out of this compound by 2002. This paper is a preliminary investigation into the use of gas chromatography isotope-ratio mass spectrometry (GCIRMS) to determine both carbon and hydrogen isotopic compositions of MTBE as a means of differentiating sources of MTBE. Three pure MTBE samples were purchased from chemical distributors. Little variation of the δ13C values were observed although the samples had isotopically distinct δ-D values. Four different methods of obtaining carbon isotope ratios of neat MTBE, MTBE in gasoline, and MTBE in water are described, and the precision and accuracy of each is discussed. The carbon isotopic compositions of MTBE within 10 gasoline samples from three different areas of the United States show a wide range of carbon isotope compositions. This novel method of MTBE analysis could be valuable in forensic investigations.  相似文献   

17.
Xu XR  Li HB  Gu JD 《Chemosphere》2006,63(2):254-260
Hexavalent chromium and methyl tert-butyl ether (MTBE) are two important environmental pollutants. Simultaneous decontamination of Cr(VI) and MTBE was studied by UV/TiO2 process. The influences of pH and the concentrations of pollutants on the kinetics of the photocatalytic reactions were evaluated. Dark adsorption tests showed that the acidic pH favored the adsorption of Cr(VI) while neutral pH favored the adsorption of MTBE. Under UV irradiation, Cr(VI) reduction was observed in Cr(VI)/TiO2 system, and MTBE oxidation was observed in MTBE/TiO2 system. The system containing Cr(VI) and MTBE by UV/TiO2 process demonstrated the synergistic effect between oxidation of MTBE and reduction of Cr(VI). The results demonstrated that two pollutants Cr(VI) and MTBE could be eliminated simultaneously by UV/TiO2 process. tert-Butyl formate, tert-butyl alcohol and acetone were identified as primary degradation products of MTBE by gas chromatography-mass spectrometry in the degradation of MTBE by UV/TiO2 process.  相似文献   

18.
The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic conditions, there is hardly any evidence of substantial degradation in the absence of oxygen. The increasing availability of field data from CSIA will foster our understanding and may even allow the quantification of degradation of these recalcitrant compounds. Such information will help to elucidate the crucial factors of site-specific biogeochemical conditions that govern the capability of intrinsic oxygenate degradation.  相似文献   

19.
《Environmental Forensics》2013,14(3):175-189
During the last decade, the fuel oxygenate methyl tertiary butyl ether (MTBE) has received widespread attention as a potential threat to water quality, primarily due to leaking underground gasoline storage tanks and watercraft with two-stroke engines. In this article, we examine the annual detection frequency, number of new source detections, and concentration of MTBE detected in California's public drinking water groundwater and surface water sources from 1995 to 2002. This work builds on our previous evaluations of California's water quality monitoring database. However, it is unique in that it includes separate evaluations for groundwater and surface water sources that are of greatest concern to regulators, and which are likely being used for current public consumption. Our evaluations also include full-year data for 2002 (which have not been published previously) and an analysis of how the sampling and reported detections of MTBE vary by geographic location. We find that MTBE was generally detected (at any level) in approximately 0.5-0.9% and 0.2-0.4% of all groundwater sources assuming a one-detection and two-detection criterion, respectively. The overall detection frequency for MTBE in surface water sources is significantly higher than for groundwater sources, although these surface water detections appear to have substantially declined since 1996 (e.g., 7-9% for all surface water sources during 1996 to 1999 and 4% for all surface water sources during 2000 to 2002, assuming a one-detection criterion). The detection frequency of MTBE concentrations at or above the state drinking water standards in all drinking water sources (both groundwater and surface water sources) and the subset of drinking water sources that are likely to currently be delivered to consumers is markedly lower (and often zero). Despite the significant increase in water sampling over time, the number of new drinking water sources found to contain MTBE in California has not increased at the same rate and appears to have remained relatively stable or to have decreased since 1998. The data also show that nearly all of the 58 counties in California have routinely sampled at least some of their groundwater and surface water sources for MTBE over the last 8 years. Geographical evaluations show that MTBE has been detected (at least once) in groundwater sources in 34 counties and in surface water sources in 18 counties but has only been detected routinely (i.e., for 3 or more years) in 16 and 7 counties, respectively. Detected concentrations of MTBE are also generally below state drinking water standards, particularly for surface water sources. In short: (1) MTBE is rarely found in California groundwater or surface water sources that are of greatest concern to regulators or the public, and (2) drinking water detections of MTBE are expected to decline in the future due to the pending phase-out of MTBE and recent regulatory programs aimed at controlling gasoline releases from underground storage tanks and two-stroke-engine watercraft.  相似文献   

20.
The effect of chloride and sulfate ions on the oxidation of methyl tert-butyl ether (MTBE) and its degradation products in a Fenton-like system was studied. Although both chloride and sulfate ions inhibited the decomposition of H202, chlorides were found to be the more effective inhibitor of MTBE degradation. In the presence of sulfates, MTBE decomposition can be attributed to oxidation not only by hydroxyl radicals, but also likely by SO4*- species. In the presence of chloride ions, it is possible that the dichloride radical is formed, which is less reactive than OH*. In the system under investigation, t-butyl alcohol was found to be the major byproduct, followed by t-butyl formate and acetone. The degradation rates of all intermediates and their inhibition in the presence of inorganic ions are similar to those obtained for MTBE, although their distributions are related to the concentrations of inorganic salts added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号