首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
Endosulfan is a cyclodiene organochlorine currently widely used as an insecticide throughout the world. This study reports that the endosulfan isomers can be readily dissipated from aqueous systems at neutral pH in the absence of biological material or chemical catalysts, in the presence or absence of oxygen. The study showed that aldrin, dieldrin, and endosulfan exhibit bi-phasic loss from water in unsealed and butyl rubber sealed vessels. Half-lives are substantially increased for endosulfan I when oxygen is removed from the incubation vessel. The study conditions, where PTFE was used, were such that loss due to volatilization and alkaline chemical hydrolysis was eliminated. Half-lives determined from these data indicate that the parent isomers are much less persistent than the related cyclodienes, aldrin and dieldrin, confirming the findings of previous studies. The major oxidation product of endosulfans I and II, endosulfan sulfate, is less volatile and can persist longer than either of the parent isomers. Endosulfan sulfate was not formed in any of the treatments suggesting that it would not be formed in aerated waters in the absence of microbial activity or strong chemical oxidants. Since endosulfan sulfate is formed in many environments through biological oxidation, and is only slowly degraded (both chemically in sterile media and biologically), it represents a predominant residue of technical grade endosulfan, which finds its way into aerobic and anaerobic aquatic environments. The data obtained contributes to and confirms the existing body of half-life data on endosulfan I and II and its major oxidation product, endosulfan sulfate. The half-life data generated from the current study can be used in models for predicting the loss of chlorinated cyclodiene compounds from aqueous systems. The findings also highlight the importance of critically reviewing half-life data, to determine what the predominant processes are that are acting on the compounds under study.  相似文献   

2.
The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.  相似文献   

3.
Kinetic studies of endosulfan photochemical degradation in controlled aqueous systems were carried out by ultraviolet light irradiation at λ = 254 nm. The photolysis of (α + β: 2 + 1) endosulfan, α-endosulfan and β-endosulfan were first-order kinetics. The observed rate constants obtained from linear least-squares analysis of the data were 1 × 10?4 s?1; 1 × 10?4 s?1; and 2 × 10?5 s?1, respectively, and the calculated quantum yields (φ) were 1, 1 and 1.6, respectively. Preliminary differential pulse polarographic (DPP) analysis allowed to observe the possible endosulfan photochemical degradation pathway. This degradation route involves the formation of the endosulfan diol, its transformation to endosulfan ether and finally the ether's complete degradation by observing the potential shifts.  相似文献   

4.
The enriched mixed culture aerobic and anaerobic bacteria from agricultural soils were used to study the degradation of endosulfan (ES) in aqueous and soil slurry environments. The extent of biodegradation was ∼95% in aqueous and ∼65% in soil slurry during 15 d in aerobic studies and, ∼80% in aqueous and ∼60% in soil slurry during 60 d in anaerobic studies. The pathways of aerobic and anaerobic degradation of ES were modeled using combination of Monod no growth model and first order kinetics. The rate of biodegradation of β-isomer was faster compared to α-isomer. Conversion of ES to endosulfan sulfate (ESS) and endosulfan diol (ESD) were the rate limiting steps in aerobic medium and, the hydrolysis of ES to ESD was the rate limiting step in anaerobic medium. The mass balance indicated further degradation of endosulfan ether (ESE) and endosulfan lactone (ESL), but no end-products were identified. In the soil slurries, the rates of degradation of sorbed contaminants were slower. As a result, net rate of degradation reduced, increasing the persistence of the compounds. The soil phase degradation rate of β-isomer was slowed down more compared with α-isomer, which was attributed to its higher partition coefficient on the soil.  相似文献   

5.
Kinetic studies of endosulfan photochemical degradation in controlled aqueous systems were carried out by ultraviolet light irradiation at lambda = 254 nm. The photolysis of (alpha + beta: 2 + 1) endosulfan, alpha-endosulfan and beta-endosulfan were first-order kinetics. The observed rate constants obtained from linear least-squares analysis of the data were 1 x 10(-4) s(-1); 1 x 10(-4) s(-1); and 2 x 10(-5) s(-1), respectively, and the calculated quantum yields (phi) were 1, 1 and 1.6, respectively. Preliminary differential pulse polarographic (DPP) analysis allowed to observe the possible endosulfan photochemical degradation pathway. This degradation route involves the formation of the endosulfan diol, its transformation to endosulfan ether and finally the ether's complete degradation by observing the potential shifts.  相似文献   

6.
HCHs and DDTs were banned in 1983 in China; however, they are still remaining in various environmental media. Since endosulfan was introduced in China in 1994, it is widely used in agriculture. In this study, temporal and spatial uses of endosulfan, HCHs, and DDTs in Gansu province of China have been presented. It is estimated that the total usage is 701 tons for endosulfan between 1994 and 2007, 1,712 tons for HCHs between 1952 and 1983, and 462 tons for DDTs between 1951 and 1983, respectively. Endosulfan usage increased dramatically in 1998 due to its application on other crops except on cotton. The HCH and DDT usage displayed a rapid increase after 1972, reaching the peak in 1976 and in 1975, respectively; since then, they declined until being banned in 1983. The gridded usage inventories of these three kinds of organochlorine pesticides in Gansu province, with a 1/4° longitude by 1/6° latitude resolution, have been created by using different crops for endosulfan and the area of dry farmland for HCHs and DDTs as surrogate data. The most intensive use was in northwestern regions for endosulfan and southeastern regions for HCHs and DDTs in Gansu province.  相似文献   

7.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo-dioxathiepin-3-oxide) is a cyclodiene organochlorine currently used as an insecticide all over the world and its residues are posing a serious environmental threat. This study reports the enrichment and isolation of a microbial culture capable of degrading endosulfan with minimal production of endosulfan sulfate, the toxic metabolite of endosulfan, from tropical acid soil. Enrichment was achieved by using the insecticide as sole sulfur source. The enriched microbial culture, SKL-1, later identified as Pseudomonas aeruginosa, degraded up to 50.25 and 69.77 % of α and β endosulfan, respectively in 20 days. Percentage of bioformation of endosulfan sulfate to total formation was 2.12% by the 20th day of incubation. Degradation of the insecticide was concomitant with bacterial growth reaching up to an optical density of 600 nm (OD600) 2.34 and aryl sulfatase activity of the broth reaching up to 23.93 μg pNP/mL/hr. The results of this study suggest that this novel strain is a valuable source of potent endosulfan–degrading enzymes for use in enzymatic bioremediation. Further, the increase in aryl sulfatase activity of the broth with the increase in degradation of endosulfan suggests the probable involvement of the enzyme in the transformation of endosulfan to its metabolites.  相似文献   

8.
A novel mixed bacterial culture was enriched from an endosulfan (6, 7, 8, 9, 10, 10 – hexachloro-1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 3, 4-benzo (e) dioxathiepin-3-oxide) processing industrial surface soil. The cultures were successful in the degradation of aqueous phase endosulfan in both aerobic and anaerobic conditions. Using the cultures, endosulfan degradation in silty gravel with sand (GM) was examined via pilot scale reactor at an endosulfan concentration of 0.78 ± 0.01 mg g? 1 of soil, and optimized moisture content of 40 ± 1%. During operation, vertical spatial variability in endosulfan degradation was observed within the reactor. At the end of 56 days, maximum endosulfan degradation efficiency of 78 ± 0.2% and 86.91 ± 0.2% was observed in the top and bottom portion of the reactor, respectively. Both aerobic and anaerobic conditions were observed within the reactor. However, endosulfan degradation was predominant in anaerobic condition and the total protein concentration in the reactor was declined progressively down the soil depth. Throughout the study, no known intermediate metabolites of endosulfan reported by previous researchers were observed.  相似文献   

9.
Indigenous mixed populations of anaerobic microorganisms from an irrigation tailwater drain and submerged agricultural chemical waste pit readily biodegraded the major isomer of endosulfan (endosulfan I). Endosulfan I was biodegraded to endosulfan diol, a low toxicity degradation product, in the presence of organic carbon sources under anaerobic, methanogenic conditions. While there was extensive degradation (>85%) over the 30 days, there was no significant enhancement of degradation from enriched inocula. This study demonstrates that endosulfan I has the potential to be biodegraded in sediments, in the absence of enriched microorganisms. This is of particular importance since such sediments are prevalent in cotton-growing areas and are typically contaminated with endosulfan residues. The importance of minimizing non-biological losses has also been highlighted as a critical issue in determining anaerobic biodegradation potential. Seals for such incubation vessels must be both oxygen and pollutant impermeable. Teflon-lined butyl rubber provides such a seal because of its resistance to the absorption of volatiles and in preventing volatilization. Moreover, including a 100 mM phosphate buffer in the anaerobic media has reduced non-biological losses from chemical hydrolysis, allowing biodegradation to be assessed.  相似文献   

10.
Endosulfan has been applied to control numerous insects in a variety of food and non-food crops. Limited information is available on dynamics of this pesticide in the soil. The objective of this research was to determine the adsorption–desorption behavior of the alpha (α) and beta (β) endosulfan in a Vertisol from the southeast region of Turkey, where cotton is the main crop in the large irrigated lowlands. The α and β endosulfan were adsorbed considerably and Freundlich adsorption–desorption isotherms fitted the α and β endosulfan data (R2 > 0.98). Freundlich adsorption coefficients (Kf) for the α endosulfan ranged between 21.63 and 16.33 while for the β endosulfan they were between 14.01 and 17.98 for the Ap and Bw2 horizons. The difference of Kf values of α and β endosulfan for two horizons were explained with the slight difference in the amount of organic matter and clay, but considerable difference in Fe contents of the two horizons. Alpha and β endosulfan Kfd values were 118.03 and 45.81 for the Ap and 48.08 and 68.71 for the Bw2 horizons. Higher adsorption and desorption behavior of the endosulfan isomers for the same horizon was attributed to poor physical bonding between the endosulfan molecule and the surfaces of fundamental soil particles. This fact is thought to increase the effective use of endosulfan in agriculture with a possibility of its movement to the surface and groundwater in the Vertisol studied.  相似文献   

11.

In the present study, we isolated three novel bacterial species, namely, Staphylococcus sp., Bacillus circulans–I, and Bacillus circulans–II, from contaminated soil collected from the premises of a pesticide manufacturing industry. Batch experiments were conducted using both mixed and pure cultures to assess their potential for the degradation of aqueous endosulfan in aerobic and facultative anaerobic condition. The influence of supplementary carbon (dextrose) source on endosulfan degradation was also examined. After four weeks of incubation, mixed bacterial culture was able to degrade 71.82 ± 0.2% and 76.04 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively, with an initial endosulfan concentration of 50 mg l?1. Addition of dextrose to the system amplified the endosulfan degradation efficiency by 13.36 ± 0.6% in aerobic system and 12.33 ± 0.6% in facultative anaerobic system. Pure culture studies were carried out to quantify the degradation potential of these individual species. Among the three species, Staphylococcus sp. utilized more beta endosulfan compared to alpha endosulfan in facultative anaerobic system, whereas Bacillus circulans–I and Bacillus circulans–II utilized more alpha endosulfan compared to beta endosulfan in aerobic system. In any of these degradation studies no known intermediate metabolites of endosulfan were observed.  相似文献   

12.

Endosulfan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenedimethylsulphite) and quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) persistence and their effect on soil microarthropods were studied after repeated applications in cotton fields. Dissipation behavior of insecticides after repeated applications was observed from 78 to 292 days after the first insecticide treatment. At any given time the concentrations of endosulfan β residues were always higher as compared to endosulfan α. From 78 to 85 days, 5.0% and 20.4% decrease in α and β endosulfan residues was observed, respectively. Endosulfan β isomer decreased up to 93.0% in 292 days. Endosulfan sulfate was detected as a major metabolite in the soil samples. Total endosulfan residues decreased by 86.6% from 78 to 292 days. The amounts of quinalphos residues were less as compared to endosulfan at any given time. The residues observed after 78 days of application were 0.88 ng g?1 d wt. soil. At the end of 145 days, a 35.0% decrease in quinalphos residue was observed, which decreased further by 50.9% in 292 days. Among the soil microarthropods studied, Acarina was more sensitive to the applied insecticides as compared to Collembola. Three days after the last treatment, up to 94.5% (p < 0.01) and 71.2% (p < 0.05) decrease in Acarina population was observed in endosulfan and quinalphos treated fields, respectively, compared to control field. In general, no noticeable change in Collembola population was observed after the insecticide treatments.  相似文献   

13.
Endosulfan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenedimethylsulphite) and quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) persistence and their effect on soil microarthropods were studied after repeated applications in cotton fields. Dissipation behavior of insecticides after repeated applications was observed from 78 to 292 days after the first insecticide treatment. At any given time the concentrations of endosulfan beta residues were always higher as compared to endosulfan alpha. From 78 to 85 days, 5.0% and 20.4% decrease in alpha and beta endosulfan residues was observed, respectively. Endosulfan beta isomer decreased up to 93.0% in 292 days. Endosulfan sulfate was detected as a major metabolite in the soil samples. Total endosulfan residues decreased by 86.6% from 78 to 292 days. The amounts of quinalphos residues were less as compared to endosulfan at any given time. The residues observed after 78 days of application were 0.88 ng g-1 d wt. soil. At the end of 145 days, a 35.0% decrease in quinalphos residue was observed, which decreased further by 50.9% in 292 days. Among the soil microarthropods studied, Acarina was more sensitive to the applied insecticides as compared to Collembola. Three days after the last treatment, up to 94.5% (p < 0.01) and 71.2% (p < 0.05) decrease in Acarina population was observed in endosulfan and quinalphos treated fields, respectively, compared to control field. In general, no noticeable change in Collembola population was observed after the insecticide treatments.  相似文献   

14.
15.
In the present study, we isolated three novel bacterial species, namely, Staphylococcus sp., Bacillus circulans-I, and Bacillus circulans-II, from contaminated soil collected from the premises of a pesticide manufacturing industry. Batch experiments were conducted using both mixed and pure cultures to assess their potential for the degradation of aqueous endosulfan in aerobic and facultative anaerobic condition. The influence of supplementary carbon (dextrose) source on endosulfan degradation was also examined. After four weeks of incubation, mixed bacterial culture was able to degrade 71.82 +/- 0.2% and 76.04 +/- 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively, with an initial endosulfan concentration of 50 mg l(-1). Addition of dextrose to the system amplified the endosulfan degradation efficiency by 13.36 +/- 0.6% in aerobic system and 12.33 +/- 0.6% in facultative anaerobic system. Pure culture studies were carried out to quantify the degradation potential of these individual species. Among the three species, Staphylococcus sp. utilized more beta endosulfan compared to alpha endosulfan in facultative anaerobic system, whereas Bacillus circulans-I and Bacillus circulans-II utilized more alpha endosulfan compared to beta endosulfan in aerobic system. In any of these degradation studies no known intermediate metabolites of endosulfan were observed.  相似文献   

16.

A bacterium capable of metabolizing endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine3-oxide) was isolated from cotton-growing soil and effectively shown to degrade endosulfan into endosulfan sulfate. The bacterium degraded 50% of the compound within 3 days of incubation. Endosulfan sulfate was the only terminal product and no other metabolites were formed during the incubation. Endosulfan and its metabolites were analyzed by gas chromatography. The metabolites formed indicated that the organism follows an oxidative pathway for metabolism of this pesticide. Therefore, the present study, microbial degradation of endosulfan by a soil bacterium, may provide a basis for the development of bioremediation strategies to remediate the pollutants in the environment.  相似文献   

17.
A novel mixed bacterial culture was enriched from an endosulfan (6, 7, 8, 9, 10, 10 - hexachloro-1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 3, 4-benzo (e) dioxathiepin-3-oxide) processing industrial surface soil. The cultures were successful in the degradation of aqueous phase endosulfan in both aerobic and anaerobic conditions. Using the cultures, endosulfan degradation in silty gravel with sand (GM) was examined via pilot scale reactor at an endosulfan concentration of 0.78 +/- 0.01 mg g(- 1) of soil, and optimized moisture content of 40 +/- 1%. During operation, vertical spatial variability in endosulfan degradation was observed within the reactor. At the end of 56 days, maximum endosulfan degradation efficiency of 78 +/- 0.2% and 86.91 +/- 0.2% was observed in the top and bottom portion of the reactor, respectively. Both aerobic and anaerobic conditions were observed within the reactor. However, endosulfan degradation was predominant in anaerobic condition and the total protein concentration in the reactor was declined progressively down the soil depth. Throughout the study, no known intermediate metabolites of endosulfan reported by previous researchers were observed.  相似文献   

18.
Concentrations of the insecticide endosulfan (α- and β-isomer) and its degradation product endosulfan sulfate in air, seawater and soil are calculated with the global environmental fate model CliMoChem. As model input, physicochemical properties of all three compounds were assembled and a latitudinally and temporally resolved emission inventory was generated. For concentrations in air, model and measurements are in good agreement; a bimodal seasonality with two peaks in spring and fall as it is observed in Arctic air is reproduced by the model. For seawater, the agreement of model and measurements depends on the values of the hydrolysis activation energy of endosulfan used in the model; with relatively high values around 100 kJ/mol, model results match field data well. The results of this assessment of the levels, persistence, and global distribution of endosulfan are also relevant for the evaluation of endosulfan as a Persistent Organic Pollutant under the Stockholm Convention.  相似文献   

19.
A Mg0/Pd(+4) bimetallic system was evaluated to dechlorinate endosulfan and lindane in the aqueous phase. Studies were conducted with endosulfan and lindane separately, with or without acid in a 1:1 (v/v) water:acetone phase. In the absence of any acid, higher degradation of endosulfan and lindane was observed using Mg0/Pd(+4) doses of 10/0.5 and 4/0.1 mg/mL, respectively. Acetone plays an important role in facilitating the dechlorination reaction by increasing the solubilities of pesticides. Dechlorination kinetics for endosulfan and lindane (30 and 50 mg/L [30 and 50 ppm] concentration of each pesticide) were conducted with varying Mg0/Pd(+4) doses, and the time-course profiles were well-fitted into exponential curves. The optimum observed rate constants (k(obs)) for endosulfan and lindane were obtained with Mg0/Pd(+4) doses of 5/0.5 and 4/0.1 mg/mL, respectively. Gas chromatography-mass spectrometry analyses revealed that endosulfan and lindane were dechlorinated completely into their hydrocarbon skeletons-Bicyclo [2,2,1] hepta 2-5 diene and benzene, respectively.  相似文献   

20.
The bioaccumulation potential of endosulfan was determined by constantly exposing male and female adult crayfish, Procambarus clarkii to 100 ppb Thiodan insecticide for 8 wks. The crayfish were removed at 2 wk intervals and the uptake by tissues (whole-body) was determined by electron capture gas-chromatography. The same number of pre-exposed crayfish (100 ppb Thiodan) were transferred to endosulfan-free water after 8 wks, and insecticide loss (depuration) was similarly quantitated. The maximum amount of insecticide and its metabolites detected after 8 wks were 197 ppb endosulfan II, 18 ppb endosulfan I and 3 ppb endosulfan sulfate. During the first 4 wks of depuration, endosulfan loss from cryfish tissues occurred rapidly, and only 3 ppb endosulfan I remained. No endosulfan II and sulfate were detected beyond 4 wks. The residues in male vs female were not significant statistically. Bioaccumulation factor (BF) for endosulfan II for crayfish tissues was 1.97, which is considerably lower than for other aquatic invertebrates (26 for scallop, Chlamys opercularis and 600 for mussel, Mytilus edulis. The presence of endosulfan sulfate in the tissues cannot be considered as 'detoxification' which is as toxic as the parent compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号