首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以聚砜超滤膜为基膜,间苯二酚(RES)与哌嗪(PIP)混合作为水相溶液,均苯三甲酰氯(TMC)为有机相溶液,采用界面聚合法制备复合纳滤膜。探索了混合水相质量比RES/PIP、TMC浓度、界面聚合时间、热处理温度及热处理时间等界面聚合条件对复合膜分离性能的影响,考察了最佳条件所得复合膜对不同种类无机盐的分离性能,并使用原子力显微镜(AFM)对基膜及所得复合膜表面形貌进行了表征。结果表明最佳聚合条件为:RES质量分数0.5%,PIP质量分数1.5%,TMC质量分数0.15%,水相浸渍时间3 min,界面聚合反应时间60 s,热处理温度80℃,热处理时间3 min;在0.6 MPa下,所得复合膜对4种无机盐的截留顺序依次为Na_2SO_4MgSO_4≥MgCl_2NaCl,这表明静电排斥作用在纳滤膜分离过程中占主导地位;此外,由基膜和所得复合膜的表面形貌对比结果可得,通过界面聚合反应会在基膜表面形成一层粗糙度较大的聚酰胺功能层。  相似文献   

2.
钯金属具有较高的催化加氢性能,钯催化还原降解水体中污染物的研究一直是国内外研究的热点。为了制备催化性能稳定、催化活性高且易于回收利用的Pd催化剂,实验以聚丙烯腈(PAN)聚合物分离膜作为基材,采用层层自组装方法将聚乙烯亚胺/钯配合物(PEI-Pd(II))和聚苯乙烯磺酸钠(PSS)交替组装在基膜表面,制备了(PEI-Pd(0)/PSS)n复合催化膜,并采用膜分离装置通过对硝基苯酚催化加氢反应来评价催化膜的催化性能。实验结果表明,荷电化处理时间、NaOH溶液浓度、PEI和Pd(II)摩尔比、自组装层数影响着膜的催化性能。当荷电化处理时间为1.5 h,NaOH溶液浓度为1.5 mol/L,PEI和Pd(II)摩尔比为60∶4,自组装层数为5层时,复合催化膜有最佳的催化性能,其对对硝基苯酚的去除率能达到90%以上。  相似文献   

3.
采用化学沉淀法与液相复合方法联合制备磁性无机-有机Fe_3O_4/纤维素复合材料。采用扫描电镜及红外光谱对其进行结构表征,以亚甲基蓝溶液为模拟废水,考察了接触时间、溶液初始pH及反应温度等因素对其吸附性能的影响,分别用准一级动力学和准二级动力学方程对数据进行拟合。结果表明,温度为22℃,溶液初始pH为7.55,Fe_3O_4/纤维素纳米复合材料加量为0.67 g·L~(-1),接触时间2 h,30 mg·L~(-1)亚甲基蓝脱色率达99.20%,准二级动力学模型能更好地描述Fe_3O_4/纤维素复合材料对亚甲基蓝的吸附行为。同时,Fe_3O_4/纤维素纳米复合材料具有较强的磁性,可通过简单的磁铁吸引作用进行分离。  相似文献   

4.
采用溶胶-凝胶法制成CoFe_2O_4/TiO_2/鳞片石墨粒子电极,用电子扫描电镜(SEM)、X-射线衍射仪(XRD)和X-射线光电子能谱仪(XPS)对该粒子电极的形貌、晶体结构和元素组成进行分析,并将其应用于罗丹明B(Rh B)的光电催化实验;考察电解质浓度、粒子电极投加量、电压、pH和初始浓度等因素对罗丹明B降解的影响,并研究了罗丹明B的光电催化降解动力学。结果表明:光催化和电化学联合作用时,产生协同作用;在电解质Na_2SO_4溶液浓度为0.03 mol·L~(-1),粒子电极投加量为6.67 g·L~(-1),外加电压为8 V,pH为3,反应时间为45 min时,浓度为15 mg·L~(-1)的罗丹明B的去除率达到97.6%;罗丹明B的光电催化降解反应符合假一级动力学模型。  相似文献   

5.
鉴于聚环氧琥珀酸钠(PESA)对高钙废水中酶活性研究不足的问题,在SBR反应器中研究了不同ρ(Ca~(2+))和ρ(PESA)对过氧化氢酶、脲酶、磷酸酶、蛋白酶、灰分和F值的影响及其变化规律。结果表明:在ρ(Ca~(2+))由0升至1 920 mg·L~(-1)过程中,过氧化氢酶从2.3下降至0.5 mg·(g·min)~(-1),磷酸酶变化为2 325→4 579→2 394μg·(g·h)~(-1),脲酶变化为:105→56.5→70.6→39.51μg·(g·h)~(-1),蛋白酶变化为:6.81→14.28→3.49→14.22→0.73 mg·(g·h)~(-1),F值从0.86降至0.69,灰分从402 mg·L~(-1)上升至1 890 mg·L~(-1);当系统中ρ(Ca~(2+))达到1 920 mg·L~(-1)时,保持系统ρ(Ca~(2+))不变,向其中等梯度加入PESA(ρ为5~25 mg·L~(-1)),过氧化氢酶从0.5降至0.3 mg·(g·min)~(-1),磷酸酶从2 394.8上升至9 336.7μg·(g·h)~(-1),脲酶从39.51升至82.31μg·(g·h)~(-1),蛋白酶基本不变,F值保持在0.7左右,ρ(灰分)从1 890降至1 358 mg·L~(-1)。研究表明高浓度钙离子严重影响生物酶、生物量和灰分;而PESA可与钙形成可溶性的螯合物分散在水中,具有使沉积钙盐减少和酶活性恢复的作用。  相似文献   

6.
采用壳聚糖与Fe_3O_4对硅藻土进行混合改性,制备出一种吸附效果好、且能从液相中磁分离的新型复合吸附剂。通过SEM、XRD、VSM和FTIR等手段对其进行表征,并探究溶液pH、吸附剂投加量以及吸附温度等条件对水溶液中Pb~(2+)吸附效果的影响。结果表明:壳聚糖和Fe_3O_4都能够负载到硅藻土上面。当溶液pH为5、吸附剂投加量为10 g·L~(-1)、初始浓度为10 mg·L~(-1)时,Pb~(2+)去除率可以达到96.4%。吸附过程较好地符合假二级动力学模型和Langmuir吸附等温模型,热力学数据说明该吸附是吸热、自发的过程。  相似文献   

7.
以盐酸和十六烷基三甲基溴化铵对包钢高炉渣进行表面改性,通过XRD、SEM和N_2吸附-脱附测试研究其微观结构和孔径分布,并以阴离子型染料甲基橙溶液为模拟染料废水研究其吸附性能,进而探索最佳改性制备条件。研究结果表明:有机改性高炉渣主要化学成分为SiO_2,表面有明显的孔道结构,比表面积高达394.5 m~2·g~(-1),平均孔径为12.4 nm;有机改性高炉渣对甲基橙溶液均具有较强的吸附性能,最佳改性条件为加入改性剂盐酸浓度为3 mol·L~(-1)、十六烷基三甲基溴化铵的最终投加浓度为8 g·L~(-1)、水热温度160℃和16 h,此时所制备的有机改性高炉渣吸附性能最强,吸附率为98.06%,最大吸附量达357.14 mg·g~(-1)。等温吸附实验表明,有机改性高炉渣对甲基橙溶液的吸附属于多分子层吸附。  相似文献   

8.
采用微生物育种技术,从活性污泥中分离筛选得到活性菌株,结合微生物生态学原理,对高效去除污水中COD的复合菌剂构建原则进行探究。通过考察单菌的COD去除效果与絮凝效果,获得7株菌。分别在SBR和A/O模拟系统中进行验证,按COD-03比例复合时,SBR系统出水COD从300 mg·L~(-1)降到约120 mg·L~(-1)(进水COD 1 200 mg·L~(-1)),较其他组具有极显著性降低(α=0.01);A/O系统出水COD从约500 mg·L~(-1)降到将近100 mg·L~(-1)(进水COD 1 200 mg·L~(-1))。结果表明,复合菌剂构建策略具有良好的应用性和可操作性,在COD微生物增效菌剂制备方面具有良好可行性。  相似文献   

9.
通过尼罗蓝荧光筛选,从活性污泥体系中筛得Ace-6、But-1和But-17。经DNA分子鉴定,Ace-6缺陷短波单胞菌(Brevundimonas diminuta),But-1约氏不动杆菌(Acinetobacter Johnsonii),But-17蜡样芽孢杆菌(Bacillus cereus)。采用摇瓶平行发酵实验,确定了各自的最佳碳源和氮源,并通过多因素正交实验对其进行合成条件优化。结果表明,Ace-6菌株合成条件为温度30℃、乙酸钠30 g·L~(-1)、酵母粉0.35 g·L~(-1)、pH 7.0、接种量5%,PHAs的总量可达412.02 mg·L~(-1);But-1菌株的合成条件为温度35℃、乙酸钠20 g·L~(-1)、硫酸铵0.35 g·L~(-1)、pH 7.5、接种量8%,PHAs的合成量可达392.39 mg·L~(-1);But-17菌株合成条件为温度35℃、淀粉20 g·L~(-1)、氯化铵0.35 g·L~(-1)、pH 7.5、接种量5%,PHAs可达304.70 mg·L~(-1)。  相似文献   

10.
针对全氟化合物难降解问题通过碳纳米管(CNT)诱导臭氧高级氧化路径研究非均相催化体系对高稳性全氟辛烷磺酸(PFOS)的降解效能与机制。结果表明:CNT介质可催化臭氧通过C-F断键对PFOS强制氧化分解,其准一级降解常数(A=0.O_37 min~(-1),5 mg·L~(-1)CNT)均高于碱式臭氧处理(A:=0.009 min~(-1),pH=11)以及高负荷活性炭颗粒(A:=0.013 min~(-1)3 g·L~(-1)GAC);溶液pH是控制催化过程的重要因素酸性或碱性环境由于PFOS吸附阻隔均不利于CNT表面与溶解O_3的接触催化反应;结合羟基自由基淬灭实验,推测CNT通过表面石墨层促成·OH大量生成并在固/液界面原位降解PFOS。研究结果可为开发利用CNT介质强化臭氧水处理过程提供科学依据。  相似文献   

11.
以屠宰场废弃动物血液为原料,经高温干燥、粉碎为血粉,以此血粉为吸附剂,研究血粉添加量、溶液初始浓度、吸附温度、溶液pH、吸附时间对废水中Cd2+吸附量与去除率的影响。结果表明,在25℃、pH=5时,4 g血粉对初始浓度为20mg·L~(-1)的镉离子溶液(100 m L)振荡吸附2 h后,溶液中剩余镉离子浓度为0.1 mg·L~(-1),Cd2+的去除率为99.38%,达到污水综合排放标准(GB 8978-1996)中镉排放限值0.1 mg·L~(-1);血粉对镉离子的吸附反应符合Langmuir等温吸附方程,可决系数为0.999 7,Cd2+的理论饱和吸附量为10.24 mg·g-1。为了使剩余Cd2+浓度达到更低(电镀废水排放标准),在吸附工艺上设计出2步吸附法,即第1次吸附后的混合液进行过滤,再将滤液加1 g血粉进行第2次吸附。结果表明,2步吸附法大大降低了溶液中剩余Cd2+离子浓度,即经过第1步、第2步吸附后,溶液中剩余Cd2+离子浓度降至0.006 mg·L~(-1),达到或低于电镀污染物排放标准(GB 21900-2008)对Cd2+的排放限值(0.05 mg·L~(-1))。这是常规吸附剂活性炭、石英砂、高岭土等所不能达到的技术指标,为废水去除Cd2+提供了一种可能的新技术。  相似文献   

12.
将三聚氰胺海绵(MF)浸入氧化石墨烯(GO)悬浮液,经微波溶剂热还原反应后,用聚二甲基硅氧烷(PDMS)进一步修饰,得到超疏水亲油的石墨烯复合改性吸油海绵(rGO-PDMS-MF)。优化了GO和PDMS改性试剂的浓度,通过扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)及接触角(CA)测定仪对海绵结构和性质进行了表征,测试了海绵的饱和吸油性能、重复使用性能及油水分离性能。结果表明:GO悬浮液和PDMS溶液最适浓度分别为2.0g·L~(-1)和1.0%(质量分数);所得海绵的接触角达151.5°,饱和吸油能力达45~110g·g~(-1),可通过吸附-挤压方式重复使用10次以上;rGO-PDMS-MF海绵对油水体系具有良好的选择性,与泵装置结合后可以连续有效地将油从水面分离,再生使用后仍保持较高的浮油回收速率和较强的疏水性能。  相似文献   

13.
采用电催化氧化方式降解水体中抗生素磺胺(sulfonamide,SA),考察SA初始浓度、溶液pH、电流强度、电解质种类和浓度对SA降解的影响,运用循环伏安法和水杨酸自由基捕获法研究电催化降解SA的作用机制,并通过LC-MS分析电催化SA的降解产物。结果表明:SA初始浓度0.12 mmol·L~(-1)、溶液pH为3.0、电流强度20 mA·cm~(-2)、电解质Na_2SO_4浓度为50 mmol·L~(-1)时,电催化氧化降解3 h后SA降解率为89.2%;电催化氧化降解SA的一级反应是直接氧化和间接氧化共同作用的过程,一部分SA分子在阳极表面通过电子转移直接氧化生成一级产物,另一部分SA分子与电解体系产生的·OH发生间接氧化,2种一级产物继续被·OH氧化,生成马来酸和富马酸。  相似文献   

14.
采用化学还原法制备纳米四氧化三铁,与聚合氯化铝(PAC)制备MFPAC磁性混凝剂,利用混凝沉淀-矿化垃圾吸附预处理垃圾渗滤液,用单因素变量法确定实验的最佳运行参数。结果表明:MFPAC磁性混凝剂对COD和色度的去除效果优于单独投加混凝剂PAC,在纳米四氧化三铁与PAC的质量比为1∶3、MFPAC的投加量为1.5 g·L~(-1)、搅拌条件为转速为300 r·min-1下搅拌60 s、溶液pH值为7.5(垃圾渗滤液原水的pH值)、絮凝时间为30 min的最佳运行条件下,COD由5 810 mg·L~(-1)降低到2 173 mg·L~(-1),色度由1 658倍降低到556倍,其COD去除率为62.6%,色度去除率为66.5%;利用矿化垃圾作为吸附剂处理MFPAC混凝处理后的出水,在矿化垃圾粒径小于2 mm、焙烧温度为700℃、吸附剂投加量为40 mg·L~(-1)、pH值为9的最佳条件下,经过12 h的处理,COD和氨氮的去除率分别为56.7%和68.4%,最终出水的COD和氨氮的浓度分别为941 mg·L~(-1)和343 mg·L~(-1);最终,MFPAC混凝沉淀-矿化垃圾吸附工艺对垃圾渗滤液COD、色度和氨氮的去除率分别为83.8%、78.5%和74.3%。  相似文献   

15.
从石油污染土壤中筛选得到一株石油降解菌SYBS01,鉴定为假单胞菌(Pseudomonas sp.)。通过单因素实验和正交实验进行石油降解条件优化,结果为35℃、170 r·min~(-1),酵母浸粉15 g·L~(-1),KH_2PO_40.5 g·L~(-1),自然pH值。其中氮源为酵母浸粉时对菌SYBS01降解石油的影响最大。添加酵母浸粉后,4 d石油降解率达到85.6%,分别为(NH_4)_2SO_4、NH_4NO_3和尿素的6.7、7.8、2.6倍。进一步分析发现酵母浸粉作为氮源的同时也起到外加营养的作用。在最佳条件下,0.5~5 g·L~(-1)的石油的降解均符合一级动力学模型,且石油浓度为3 g·L~(-1)和4 g·L~(-1)的石油降解半衰期仅为26 h。  相似文献   

16.
考察了不同乙酸钠浓度下非缓冲微生物燃料电池(BLMFC)的运行性能和无机碳(IC)(HCO_3~-或H_2CO_3)积累情况。结果表明:阳极液中IC的积累浓度与乙酸钠浓度呈线性相关,在乙酸钠浓度为0.5 g·L~(-1)和1.0 g·L~(-1)的BLMFC体系中,IC积累浓度分别为8.02 mmol·L-1和13.60 mmol·L~(-1),阳极液出现酸化现象,pH降低至6.2和6.5;体系输出电压(U)与阳极液pH出现相同的先下降后上升的变化趋势,体系最大功率密度(P_(max))分别为242 mW·m~(-2)和428 mW·m~(-2)。当乙酸钠浓度增大到2.0 g·L~(-1)和3.0 g·L~(-1)时,IC积累浓度增加到30.64 mmol·L~(-1)和42.42 mmol·L~(-1);乙酸盐自身的缓冲作用和体系积累的较高浓度IC可以将阳极液pH维持在7.4~8.5,输出电压稳定在350 mV左右;P_(max)增大到668 mW·m~(-2)和699 mW·m~(-2),可以实现自缓冲稳定运行。  相似文献   

17.
以生物质二层牛皮为原料,在控制热分解条件下制备了生物质基炭膜。利用TG/DTG、XRD、FT-IR、SEM、TEM和低温N_2吸附-脱附等方法对在不同炭化温度下(550~950℃)制备的生物质基炭膜形貌特征、孔隙结构及其表面化学性质进行了表征。考察了炭化温度、反应时间、溶液pH、加入量等因素对炭膜吸附溶液中铅离子的影响。表征结果表明:随着炭化温度的升高,生物质基炭膜碳微晶趋于石墨化发展,总孔容积持续增大,孔隙结构变得更加发达。实验结果表明:随炭化温度升高,生物质基炭膜对铅离子的吸附效果明显变好;在初始铅离子质量浓度为50 mg·L~(-1)、溶液pH为5.5、吸附剂加入量为1.5 g·L~(-1)、吸附时间为6 h的条件下,950℃下所制炭膜对铅离子有较好去除效果,去除率可达99.9%,吸附容量为32.76 mg·g~(-1)。  相似文献   

18.
采用环氧氯丙烷和二乙烯三胺对花生壳中纤维素进行改性,制备了二乙烯三胺花生壳纤维素(DMPSC),运用红外光谱(FTIR)进行表征,并探究了DMPSC对刚果红的吸附性能和机理。结果表明,DMPSC的吸附率明显高于其他吸附剂。在原始p H,吸附剂用量为1 g·L~(-1),吸附时间为180 min,温度为8、30和50℃时,100 mg·L~(-1)的刚果红溶液吸附量分别达到83.24、99.04和99.78 mg·g-1。吸附过程符合Langmuir等温线模型,在8℃时饱和吸附量(qm)为111.86 mg·g-1。准二级动力学方程能更好地描述吸附动力学过程,表观活化能Ea为56.88 k J·mol-1,升高温度有利于DMPSC对刚果红的吸附,该过程属于化学吸附。  相似文献   

19.
为了降低石油采出水毒性,提高其可生化性,对阴极电芬顿反应器通过电极即时产生芬顿试剂处理石油采出水进行了研究。通过实验研究分析各因素对电芬顿体系原位生产芬顿试剂效果的影响。结果表明,阴极电芬顿法处理石油采出水的体系中,在反应条件为Fe~(2+)投加量1 mmol·L~(-1),pH值3,电解质浓度5 g·L~(-1),曝气强度1 L·min-1时,阴阳两极原位生产芬顿试剂的效果最好,此时阳极自产Fe~(2+)的浓度为46.2 mg·L~(-1),阴极自产H_2O_2的浓度为6.02 mg·L~(-1),此时对石油采出水COD的去除率达到78.4%,油脂的去除率达到89.6%。  相似文献   

20.
以芒果核壳为原料通过H3PO4活化制备了新型的吸附剂H3PO4-C。考察了影响该吸附剂对水体中Cr(VI)的去除效果的因素,并研究了吸附动力学特征和吸附过程控制机理。结果表明,芒果壳生物质炭对Cr(VI)具有良好的吸附能力,在25℃下,较佳的吸附条件为:当投加量为3 g·L~(-1),Cr(VI)初始浓度为50 mg·L~(-1),溶液p H值为3时,吸附5h,去除率为93.8%。准一级、准二级动力学模型用来拟合吸附过程,结果表明,准二级动力学符合该吸附过程,吸附速率常数为0.001 3 g·(mg·min)-1。用Langmuir和Freundlich模型描述吸附等温过程,结果说明,该吸附过程服从Langmuir吸附,饱和吸附量为28.571 mg·g-1,内扩散为该吸附过程的限速步骤,内扩散系数D=4.21×10-9cm2·s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号