首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   6篇
综合类   4篇
基础理论   4篇
污染及防治   4篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   2篇
排序方式: 共有12条查询结果,搜索用时 62 毫秒
1.
考察了不同乙酸钠浓度下非缓冲微生物燃料电池(BLMFC)的运行性能和无机碳(IC)(HCO_3~-或H_2CO_3)积累情况。结果表明:阳极液中IC的积累浓度与乙酸钠浓度呈线性相关,在乙酸钠浓度为0.5 g·L~(-1)和1.0 g·L~(-1)的BLMFC体系中,IC积累浓度分别为8.02 mmol·L-1和13.60 mmol·L~(-1),阳极液出现酸化现象,pH降低至6.2和6.5;体系输出电压(U)与阳极液pH出现相同的先下降后上升的变化趋势,体系最大功率密度(P_(max))分别为242 mW·m~(-2)和428 mW·m~(-2)。当乙酸钠浓度增大到2.0 g·L~(-1)和3.0 g·L~(-1)时,IC积累浓度增加到30.64 mmol·L~(-1)和42.42 mmol·L~(-1);乙酸盐自身的缓冲作用和体系积累的较高浓度IC可以将阳极液pH维持在7.4~8.5,输出电压稳定在350 mV左右;P_(max)增大到668 mW·m~(-2)和699 mW·m~(-2),可以实现自缓冲稳定运行。  相似文献   
2.
高有机负荷冲击对填料型MBR运行性能的影响   总被引:1,自引:0,他引:1  
针对分散式农村生活污水有机负荷变化明显的特点,研究了填料型厌氧-缺氧-好氧膜生物反应器(A2O-MBR)抗高有机负荷的能力,考察了高有机负荷冲击对污染物去除效果、悬浮和附着污泥性质以及膜污染的影响.结果表明,高负荷冲击期间污染物去除稳定,氨氮去除率在冲击第3d从99.1%下降到78.5%,出水氨氮浓度高于5mg/L,随后去除率恢复至97.6%;悬浮和附着微生物的三磷酸腺苷(ATP)含量增加;附着生物量显著增加;细胞外聚合物(EPS)增加;高有机负荷冲击期间膜污染更严重,膜面污染层EPS含量显著增加;太阳能微动力A2O-MBR系统能减少10%的碳排放.  相似文献   
3.
石墨烯掺杂聚苯胺阳极提高微生物燃料电池性能   总被引:3,自引:0,他引:3  
微生物燃料电池(microbial fuel cell,MFC)技术可分解代谢污染物质并同步输出电能,在环境及能源领域吸引了越来越多的关注.但是,输出功率密度较低、成本较高、底物降解率低等特点限制了其实际应用,其中阳极是主要限制因素之一.本研究选取具有优异导电性、大比表面积的石墨烯和生物相容性较好的聚苯胺(polyaniline,PANI),并优化二者比例关系,制备得到石墨烯掺杂PANI复合材料.将复合材料涂覆在玻碳电极表面分析电化学性能,循环伏安(cyclic voltammetry,CV)和线性伏安扫描(linear sweep voltammetry,LSV)测试结果均显示石墨烯含量占比20%的复合电极(20%石墨烯)电化学性能最好.将复合材料修饰在碳布表面作为MFC阳极时以石墨烯含量占比5%的复合电极(5%石墨烯)生物电化学性能最佳,LSV得到最大输出功率密度为(831±45)mW·m-2,分别是20%石墨烯、1%石墨烯、石墨烯、PANI、碳布阳极的1.2、1.3、1.3、1.5、1.8倍.最大输出电压、开路电压、化学需氧量去除率、库仑效率、生物量密度均以5%石墨烯电极最高.电化学阻抗分析表明5%石墨烯电极极化内阻仅为(24±2)Ω,是碳布电极的19.8%.电化学和生物电化学性能并不完全一致,说明电极材料的生物相容性是影响MFC性能的主要因素之一.5%石墨烯阳极充分发挥了石墨烯和聚苯胺的优点,提高了MFC的产电性能.  相似文献   
4.
将适量铜纳米线(Cu-NWs)添加到常规聚偏氟乙烯(PVDF)铸膜液中,通过相转化法制备Cu-NWs导电微滤膜,表征其过滤及导电性能,并将其置于膜生物反应器(MBR)中长期运行,研究其污染物去除效果及膜污染行为,可为污水处理MBR系统的低成本稳定运行提供新途径.结果表明,添加适量基于铸膜液质量的Cu-NWs,所得微滤膜的膜通量为721.9L/(m2·h),膜面接触角为57.9°,同时,其起始电势、欧姆内阻及活化内阻分别为315.0mV、2.4Ω和6.9 Ω,均优于商用PVDF微滤膜.扫描电子显微镜(SEM)观察发现,Cu-NWs在膜面活性层交织形成了良好的导电网络.将其制作成膜组件安装于MBR系统中,兼用作阴极,COD、氨氮、TN和TP的去除率分别为91.5%、99.3%、76.3%和76.2%,高于对照MBR系统.连续运行146d,TMP始终低于25kPa,无需清洗膜组件.傅里叶变换红外光谱仪(FTIR)分析表明,膜面污染物质主要是蛋白质和多糖,膜面EPS含量远低于商用PVDF膜.所制备新型Cu-NWs导电微滤膜具有较好的稳定性、耐用性和抗污染性,应用前景广阔.  相似文献   
5.
考察了MnO2-石墨烯(r-GO)修饰阴极对沉积型微生物燃料电池(SMFC)的产电性能和体系有机质去除率的影响.实验结果表明,采用MnO2和r-GO对SMFC阴极进行复合修饰,运行稳定后,MnO2-r-GO修饰阴极体系与空白阴极体系相比,最高产电电压从65.2 mV增大到325.7 mV;最大功率密度由0.28 mW.m-2增大到17.4 mW.m-2,并且体系的内阻由1157Ω显著降低到159Ω;空白阴极体系和MnO2-r-GO修饰阴极体系的COD去除率和氨氮(NH4+-N)去除率分别由25.8%和27.3%增大到37.0%和32.7%.  相似文献   
6.
与液态微生物菌剂相比,固态菌剂的保藏时间长,菌种不易退化失活,且便于存储及运输,对降低菌剂运输及使用成本具有重要意义。在优化固态微生物菌剂制备关键影响因素的基础上,通过3因素3水平正交实验获得了最佳制备方法,即以腐熟物料作为载体,投加4%的海藻糖,含水率为15%。将所得固态微生物菌剂保存一定时间后,以食品厂污水处理剩余污泥和玉米秸秆的混合物为堆肥原料进行好氧堆肥,发现不同保存时间的固态微生物菌剂的堆肥效果相近,均可使堆体在18 h左右进入55℃以上的高温期,高温持续时间长,所得堆肥产品的理化性质也相差不大,且均符合我国生物有机肥标准(NY 884-2012)中的相关要求,所得固态菌剂的制备方法具有重要的实际价值。  相似文献   
7.
铜离子对双室微生物燃料电池电能输出的影响研究   总被引:4,自引:3,他引:1  
通过分别或同时向阳极室和阴极室添加Cu2+,借助铜在体系中的分布解析,研究了Cu2+对体系内阻及其分布、电能输出、库仑效率等的影响,以期为微生物燃料电池(microbial fuel cell,MFC)处理含铜废水的相关研究提供有益参考.结果表明,阳极添加10 mg·L-1的Cu2+会增大体系阳极反应的活化内阻及总体表观内阻,降低体系的电能输出和库仑效率,而阴极添加500 mg·L-1的Cu2+可显著降低阴极反应的活化内阻及总体表观内阻,提高体系产电效率.铜在体系中分布的研究表明,阳极室Cu2+不会向阴极室迁移扩散;当阴极添加Cu2+时,大部分被还原沉淀,另一部分因浓度梯度透过质子交换膜(proton exchange membrane,PEM)迁移扩散至阳极室(2.8%),影响产电微生物活性及系统的电能输出,仅有少部分Cu2+残留于阴极上清液中.  相似文献   
8.
考察了阴极负载Co3O4和MnOOH对天然水体中沉积物微生物燃料电池(SMFC)产电性能和SMFC对沉积物中有机质去除率的影响。实验结果表明,SMFC阴极负载Co3O4和MnOOH后,体系的输出电压由483 mV增大到549 mV和534 mV;相应体系的内阻由206 Ω显著降低到99 Ω和128 Ω,最大功率密度(Pmax)由3.3 mW/m2增大到9.1 mW/m2和6.6 mW/m2。此外,SMFC体系的电流密度与沉积物中烧失量(LOI)、易氧化有机质(ROOM)去除率呈线性关系,并且阴极负载Co3O4和MnOOH可以促进阳极沉积物中有机质的去除。  相似文献   
9.
结合极化曲线和全电池电化学交流阻抗测试,研究了菲对沉积型微生物燃料电池(Sediment Microbial Fuel Cell,SMFC)体系电能输出和COD去除率的影响.结果表明,当菲浓度为0、0.5、1.0、5.0、10.0 mg·L-1时,体系输出电压峰值分别为186.1、283.4、136.7、112.7、74.7 m V,COD去除率分别为30.8%、39.4%、26.7%、23.5%和22.0%,库伦效率则为5.4%、7.1%、4.1%、2.7%和2.1%.SMFC体系的电能输出、污染物去除和库伦效率随菲浓度升高,先促进后抑制,0.5 mg·L-1菲可促进电能输出.电化学交流阻抗谱测试结果表明,0.5 mg·L-1菲体系的欧姆内阻、活化内阻和浓差极化内阻均最小,分别为20.79Ω、14.94Ω和106.8Ω,其表观内阻主要由扩散或浓差极化内阻构成,其次为欧姆内阻,阳极氧化反应和阴极还原反应的活化内阻所占比例最小.  相似文献   
10.
磷酸盐添加对快速好氧堆肥过程pH及腐熟效果的影响   总被引:6,自引:0,他引:6  
随着我国环保政策的日趋严格,具有堆肥周期短、产品质量好、二次污染小等优点的反应器快速好氧堆肥工艺受到人们的广泛关注.然而,由于堆肥原料的有机物含量高,导致快速堆肥初期的有机酸累积,堆体pH偏低,影响堆肥效果.本研究拟通过添加磷酸盐,解决剩余污泥反应器快速堆肥过程出现的pH偏低问题.结果表明,添加磷酸盐可有效控制堆体pH,堆肥初期,HPO_4~-通过与有机酸解离产生的H~+反应生成H_2PO~-_4,提高堆体pH,堆肥后期,蛋白质降解产生较多NH~+_4,导致pH升高,堆体中的H_2PO~-_4通过与OH~-结合生成HPO_4~-,降低堆体pH.当HPO_4~-与H_2PO~-_4的摩尔比为2∶5时,堆体pH值可维持在6.0—8.5之间,有机物降解率最高,堆体的NH~+_4-N含量最大,达3.99 mg·g~(-1),堆肥过程的保氮效果较好,且所得堆肥产品的种子发芽指数也较高,腐熟程度良好.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号