首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
絮凝-Fenton试剂氧化处理印染废水   总被引:1,自引:0,他引:1  
采用Fenton试剂对某染袜厂2种印染废水(印染红和印染蓝)进行处理。考察了硫酸亚铁投加量、双氧水投加量、反应时间及pH值对印染废水的色度及COD去除率的影响,通过正交实验确定了Fenton试剂处理该废水的最佳操作条件为:反应时间30 min、双氧水(30%)投加量4 mL/L、硫酸亚铁投加量300 mg/L、pH值为4左右。在最佳条件下,印染蓝废水经氧化处理后COD去除率大于80%,色度去除率95%以上;印染红废水需经絮凝预处理后再用Fenton试剂氧化处理,其脱色率达到了99.6%,COD去除率为91.2%,出水COD浓度为96 mg/L,可达标排放。  相似文献   

2.
研究了微生物絮凝剂产生菌HHE-P7在酱油废水中产生微生物絮凝剂的絮凝特性.实验表明,酱油废水由于碳源丰富,是一种良好的培养基.HHE-P7菌最佳培养条件为:COD 20 000 mg/L,K2HPO41.0 g/L,培养3 d.最佳絮凝条件为在1 L高岭土水中投加10~15 mL微生物絮凝剂(MBF7),pH调至9,则絮凝率为90%以上;微生物絮凝剂在水系中主要起吸附架桥的作用.  相似文献   

3.
以实际印染厂二级生化出水为处理对象,以COD、色度、UV254为评价指标,采用先絮凝沉淀后臭氧氧化及先臭氧氧化后絮凝沉淀2种工艺分别进行印染废水深度处理实验。结果表明,当进水水质为:COD 80~120 mg/L、UV2540.30~0.70、色度72~84倍,在絮凝剂投加量为13.5 mg/L、臭氧投加量为16 mg/L、氧化反应30 min时,先絮凝沉淀后臭氧氧化工艺出水的COD、UV254、色度平均值分别为45.1 mg/L和0.11、4倍;在臭氧投加量为16 mg/L、氧化反应30 min、絮凝剂投加量为10.1 mg/L时,先臭氧氧化后絮凝沉淀工艺出水的COD、UV254、色度分别为45 mg/L和0.10、4倍,说明2种工艺均是可行的,且先臭氧氧化后絮凝沉淀为较优工艺。  相似文献   

4.
青霉菌HHE-P7利用酱油废水产生微生物絮凝剂的研究   总被引:16,自引:0,他引:16  
研究了微生物絮凝剂产生菌HHE-P7在酱油废水中产生微生物絮凝剂的絮凝特性。实验表明,酱油废水由于碳源丰富,是一种良好的培养基。HHE-P7菌最佳培养条件为:COD20000mg/L,K2HP041.0g/L,培养3d。最佳絮凝条件为在1L高岭土水中投加10~15mL微生物絮凝剂(MBF7),pH调至9,则絮凝率为90%以上;微生物絮凝荆在水系中主要起吸附架桥的作用。  相似文献   

5.
制备了聚硅酸氯化铝(PASC)絮凝剂,并用其进行了皂素废水处理实验。考察了絮凝剂投加量、pH值、搅拌速度对COD和浊度去除率的影响。结果表明,当絮凝剂投加量为9~13.5 mg/L、pH值5~7、搅拌速度150~250 r/min时,COD和浊度去除效果较好。最佳工艺条件为:絮凝剂投加量11.25 mg/L、pH值6、搅拌速度200 r/min。此时,COD去除率为93.7%,浊度去除率为97.5%。PASC的絮凝性能明显优于PAC。  相似文献   

6.
采用絮凝—膜生物反应器(MBR)组合工艺进行印染废水处理的试验研究.结果表明,调节pH至8.5、搅拌时间为30min时,COD和色度去除效果最佳;而单纯絮凝工艺对印染废水处理效果不理想,最佳运行条件为64 mg/L NaOH+75 mg/L饱和石灰水+0.2 mg/L聚丙烯酰胺(PAM)+3 mg/L硅酸钠+8 mg/L聚合氯化铝(PAC),COD和NH3-N平均去除率分别达到23.91%、31.17%.在上述最佳运行条件下,采用絮凝—MBR组合工艺处理印染废水,效果较显著;出水COD均值可达42.2mg/L,其平均去除率为91.62%;出水NH3-N均值可达6.26 mg/L,其平均去除率为92.43%,出水水质可达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B标准.  相似文献   

7.
采用响应面分析法对聚合氯化铝(PAC)与污泥生产的微生物絮凝剂复配处理涂料废水的过程进行了优化,设定的响应值为COD和色度去除率。实验分别拟合了关于COD去除率和色度去除率的二次模型,根据响应值的分布情况,确定涂料废水的最佳絮凝条件为微生物絮凝剂浓度47 mg/L,PAC浓度39 mg/L,pH为8.2,CaCl2浓度0.38 g/L,搅拌速度210 r/min。最佳絮凝条件下,微生物絮凝剂对涂料废水中COD和色度的去除率分别达到77.6%和68.9%。  相似文献   

8.
进行了微絮凝-超滤工艺处理微污染水源水的中试研究.试验结果表明:在微絮凝-超滤工艺中,相同混凝剂投加量(相同金属摩尔浓度)下铁盐比铝盐的混凝效果好;微絮凝-超滤工艺的最佳絮凝时间为120 s左右;最佳混凝剂投加量为2.2 mg/L(以Fe计).微絮凝-超滤工艺在改善出水水质和缓解膜污染方面均优于直接超滤工艺.微絮凝-超滤工艺的出水水质均符合建设部<城市供水水质标准>(CJ/T206-2005)要求.  相似文献   

9.
简单芽孢杆菌产高效微生物絮凝剂   总被引:3,自引:1,他引:2  
通过从绿化植物根际土壤和污水处理厂的活性污泥中分离筛选絮凝剂产生菌,得到一株稳定高效的微生物絮凝剂产生菌PS1,根据形态学特征、生理生化实验以及16S rDNA序列分析将其鉴定为简单芽孢杆菌(Bacillus simplex)。对菌株PS1产生絮凝剂的最佳培养时间、絮凝活性分布以及pH、CaCl2、絮凝剂投量对絮凝效果的影响进行了研究,并考察了其对实际废水的絮凝效果。结果表明,菌株PS1产絮凝剂的最佳培养时间为36 h,产生的絮凝活性物质全部存在于发酵液离心后的上清液中;当pH为7.0~8.5、CaC12投量为0.25~0.35 g/L、发酵液投加量的体积分数为1.5%~2.5%时,菌株PS1发酵液对4 g/L的高岭土悬浊液的絮凝效果最佳,絮凝率达到97%。菌株PS1所产絮凝剂对城市污水、啤酒废水、淀粉废水、医院废水的絮凝率可达90%以上。  相似文献   

10.
Fe/C微电解 絮凝沉淀法处理电镀废水中铜的研究   总被引:2,自引:2,他引:0  
利用Fe/C微电解-絮凝沉淀法去除青岛某电子有限公司电镀废水中Cu2+。通过正交与单因素实验,考察了废水初始pH,Fe/C,Fe投加量,反应时间对Cu2+处理效果的影响。实验结果表明:在初始pH=4、Fe/C(质量)=2/1、Fe投加量=60 g/L、反应时间=60 min的实验条件下,絮凝出水Cu2+含量由641.78 mg/L降至0.32 mg/L,还原率高达99.95%,同时COD去除率23.57%。出水Cu2+含量达到山东省半岛流域水污染物综合排放Ⅰ级标准。  相似文献   

11.
采用Fe/C微电解耦合H_2O_2工艺对经复合混凝处理后的某页岩气井钻井废水进行处理,考察了Fe/C质量比、Fe/C投加量、溶液pH值、气水比、H_2O_2(30%)投加量和反应时间对COD去除率的影响。结果表明,耦合工艺最佳实验条件为Fe/C质量比1∶1、Fe/C投加量500 g·L-1、溶液pH值2.5、气水比20∶1、H_2O_2(30%)投加量6 m L·L-1、反应时间120 min。最佳工艺条件下,页岩气钻井废水经处理后,出水COD质量浓度为89.54 mg·L~(-1),去除率达到81.60%。  相似文献   

12.
基于废弃桑枝的新型絮凝剂的制备及应用研究   总被引:1,自引:0,他引:1  
针对栽桑养蚕过程中废弃桑枝的综合利用,以废弃桑枝和十六烷基三甲基溴化铵为原料,经微波辐射加热制备高分子絮凝剂。通过单因素实验确定了制备絮凝剂的最佳工艺条件,并采用该絮凝剂处理造纸废水。结果表明,制备絮凝剂的最佳工艺条件为:NaOH溶液浓度为8%,碱化温度为室温,碱化时间为30 m in,Fe2+/H2O2的加入量为14 mmol/L,桑枝粉与十六烷基三甲基溴化铵的质量比为1∶1,微波功率为500 W,反应温度为90℃,反应时间为60 m in。制备的絮凝剂对造纸废水具有高效絮凝性能,在造纸废水pH值为10,絮凝剂投加量为100 mg/L的条件下,COD和浊度去除率分别达48.2%和81.4%。该絮凝剂对造纸废水的絮凝效果明显优于氯化铝,与聚合氯化铝相当,但其用量明显低于氯化铝和聚合氯化铝。  相似文献   

13.
采用零价铁Fenton技术处理含聚乙烯醇(PVA)的印染退浆废水。通过单因素实验和正交实验,考察了初始pH、H2O2投加量、铁屑粒径及投加量和反应时间对实验结果的影响。结果表明,初始pH和H2O2投加量对处理效果影响很大。最佳反应条件是初始pH=4.0,H2O2投加量为100mmol/L,铁屑(粒径为1~3mm)投加量为15g/L,反应时间为30min。在该条件下,出水PVA质量浓度为0.9mg/L,PVA去除率为99.9%,COD去除率为23.6%,BOD5/COD由0.12升高至0.34,可生化性明显提高。无论从处理效果考虑还是从成本考虑,零价铁Fenton技术都优于传统Fenton技术。  相似文献   

14.
复合菌群的构建及其所产微生物絮凝剂的动力学研究   总被引:6,自引:2,他引:6  
由2株产低效絮凝剂产生菌构建出产高效絮凝剂的复合菌群--复合1.实验表明,复合1能在啤酒废水培养基中生长良好,并产生絮凝活性为96.8%的MBF.该MBF中含多糖和蛋白质等有机高分子物质.它能有效去除靛蓝印染废水中的COD和色度,两者的最大去除率分别为79.2%和87.6%.考察了该MBF在优化工艺条件下对靛蓝印染废水的絮凝过程,并得出了其去除COD和脱色的经验动力学方程.  相似文献   

15.
Fenton试剂作为一种具有强氧化性的试剂,广泛地应用于废水处理的研究中.通过正交实验对Fenton试剂处理废水的几种影响因素进行了讨论,得出了影响因素的次序:Fe2 的投加量>H2O2的投加量>pH值>反应时间.同时得到Fenton试剂处理造纸废水的最佳工艺条件:pH=5.0,FeSO4·7H2O的投加量为5.93g/L,H2O2的投加量为8.8‰(体积百分比),搅拌时间0.5 h,COD值由原来的2167 mg/L降至187 mg/L,COD去除率达到91.37%.  相似文献   

16.
高浓度钻井废水的混凝-催化氧化处理   总被引:2,自引:0,他引:2  
以华北油田某深井的高浓度钻井废水(COD高达14 460.0 mg/L)为研究对象,提出了酸化-混凝-催化氧化-吸附的组合处理工艺。重点研制了钻井废水催化氧化处理催化剂(镍基催化剂),通过实验确定了最佳工艺参数条件。着重考察了催化氧化处理的工艺条件,在pH值为4,次氯酸钙投加量为4.4 g/L,催化剂投加量为1.6 g/L的条件下COD降至403.5 mg/L,进一步吸附处理后COD降至139.9 mg/L、色度为30倍、石油类含量为3.8 mg/L、pH为8.0和SS浓度为52mg/L,最终出水水质达到《污水综合排放标准》(GB 8978-1996)二级标准,处理成本为84.8元/m3。  相似文献   

17.
微絮凝-超滤工艺处理微污染水源水的中试研究   总被引:2,自引:0,他引:2  
进行了微絮凝.超滤工艺处理微污染水源水的中试研究。试验结果表明:在微絮凝-超滤工艺中,相同混凝剂投加量(相同金属摩尔浓度)下铁盐比铝盐的混凝效果好;微絮凝-超滤工艺的最佳絮凝时间为120s左右;最佳混凝剂投加量为2.2mg/L(以Fe计)。微絮凝-超滤工艺在改善出水水质和缓解膜污染方面均优于直接超滤工艺。微絮凝-超滤工艺的出水水质均符合建设部《城市供水水质标准》(CJ/T206-2005)要求。  相似文献   

18.
针对焦化废水二级生化处理出水COD、色度和浊度无法达标的问题,实验研究了异相Fenton试剂催化氧化法和混凝沉淀法以及二者联合深度处理焦化废水的效果,分别探讨了H2O2、FeOOH投加量、初始pH,混凝剂投加量及种类对COD去除的影响,确定了最佳运行条件,采用GC-MS分析了联合工艺对废水中有机物的去除规律。异相Fenton试剂催化氧化静态实验研究表明,当H2O2(10%)投加量为2 mL/300 mL,FeOOH投加量为3 g/L,初始pH为4~6之间,处理效果最佳;混凝沉淀实验中最佳的混凝剂为聚丙烯酰胺阳离子,最佳投加量为8 mg/L。异相Fenton试剂催化氧化-混凝沉淀联合工艺深度处理焦化废水,出水COD基本在90 mg/L左右,浊度为0.8NTU左右,色度为40度以下,满足国家污水综合排放二级标准(GB8978-1996)。GC-MS分析显示,联合工艺能有效减少废水中有机物的种类和浓度,并将废水中长链大分子化合物和杂环化合物分解为短链的小分子化合物,构成联合工艺出水COD的主要是小分子有机物,尤其是卤代烷烃含量较高。  相似文献   

19.
微生物制剂与玄武岩纤维联用处理城市废水   总被引:1,自引:0,他引:1  
为了探索一种新型的去除水体中有机物的工艺,以模拟城市废水为研究对象,研究不同工况条件下,复合微生物制剂、组合双环玄武岩纤维填料以及复合微生物制剂与组合双环玄武岩纤维填料结合对模拟城市废水中COD的去除情况。实验结果表明,复合微生物制剂与组合双环玄武岩纤维填料结合在曝气的情况下对COD的去除能力较高。在复合微生物制剂与组合双环玄武岩纤维填料结合的条件下,对COD浓度为500 mg/L左右的模拟城市废水的去除效率可达 97.22%;影响模拟城市废水中COD去除效果的各因素的主次顺序依次为反应时间>曝气时间>投加量=pH;得出最佳工况参数是:复合微生物制剂的投加量为0.05 g/L,曝气时间为72 h,反应时间为96 h,pH为7。  相似文献   

20.
实验考察了直接回用未脱水的给水厂污泥(undewatered water treatment sludge,UWTS)做絮凝剂进行畜禽养殖废水预处理的可行性.单因素实验结果表明,随着投加量和pH的增加,出水悬浮物浓度(suspended solid,SS)、化学需氧量(chemical oxygen demand,COD)和总磷(total phosphorus,TP)的去除率不断增加;随着快速搅拌速度的提高,UWTS的絮凝效果呈现先增强后减弱的趋势;随着沉淀时间的延长,出水中SS、COD和TP的去除率起初逐渐增大,但15 min后去除率变化不明显.进一步的正交实验分析结果表明,UWTS回用做絮凝剂的最佳反应条件为投加量2 800 mg/L,快速搅拌速度300 r/min,沉淀时间15 min,此时对应的SS、COD和TP的去除率分别为74.8%、54.6%和60.5%.最佳反应条件下的粒径分析结果表明,UWTS的投加使得粒径范围在40 ~ 180 μm的颗粒物得到了去除.尽管与商品化絮凝剂相比,UWTS的絮凝效果略差,但是,利用其预处理畜禽养殖废水具有成本优势,因而具有应用潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号