首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
乐果是常规饮用水处理技术难以去除的一种典型有机磷农药。为了能够控制并去除饮用水中的农药残留,达到进一步净化水质的目的,建立了降解动力学模型,采用模拟降解饮用水中乐果的方法,对比了乐果在紫外(UV)、氯(Cl2)、紫外/氯(UV/Cl2)、真空紫外/紫外(VUV/UV)和真空紫外/紫外/氯(VUV/UV/Cl2)5种工艺下的去除效果,并考察了乐果初始浓度、Cl2投加量、溶液p H、水中共存天然有机物(NOM)和无机阴离子(N O_3~-、Cl-、HCO_3~-、SO_4~(2-))对VUV/UV/Cl2工艺降解乐果的影响。结果表明:VUV/UV/Cl2对乐果的降解效率最高,乐果的去除率随其初始浓度的增加而减小;适当增加Cl2投加量,可提高乐果的降解效率;提高p H有利于乐果的降解;NOM对乐果的降解有一定的抑制作用;水中共存无机阴离子NO_3~-、Cl-和HCO_3~-可以捕获反应体系中的强氧化性羟基自由基(HO·),对乐果的降解起到抑制作用,而SO_4~(2-)因其捕获HO·的速率很低,无抑制作用。  相似文献   

2.
针对地表水中普遍存在的有机污染物现状和常规水处理工艺无法去除有机污染物的问题,以紫外光电氧化技术为基础,提出了以“分质供水”为目标的末端深度水处理工艺。与单独电解和光解相比,电化学氧化与紫外耦合技术可以将布洛芬、阿特拉津、三氯乙酸、乐果的降解率在15 min内分别提高到92.5%、98.1%、71.0%和94.6%,并且能耗有所降低。电流和光强对光电氧化降解有机污染物有促进作用,但污染物初始质量浓度、Cl-、HCO3-和天然有机物(HA)和污染物去除率呈反比关系。在此基础上,以布洛芬为污染物代表,测定了布洛芬的中间产物,并计算了降解中间体的毒性变化,发现光电氧化明显降低了布洛芬的毒性。  相似文献   

3.
采用类Fenton氧化-好氧移动床生物膜(MBBR)法处理难降解抗生素发酵废水,探讨了H2O2和草酸投加量对类Fenton氧化工艺以及HRT和曝气量对好氧MBBR反应器的影响.实验结果表明,当类Fenton氧化工艺的最佳操作参数为反应溶液H2O2和草酸初始质量浓度分别为150、45 mg/L、30 W/154 nm紫外灯照射1 h、pH为3.0,在曝气搅拌条件下,COD平均去除率为80.9%.当类Fenton氧化工艺出水pH在7.0时,废水中的污染物还可以进一步被混凝去除.好氧MBBR反应器的最佳工艺参数为HRT 12 h、曝气量0.10 m3/h以及填料填充比(体积比)30%,最终废水COD平均去除率为99.1%,达到<污水综合排放标准>(GB 8978-1996)三级标准要求.  相似文献   

4.
采用自制驯化装置,从土壤中分离纯化出一株能以乐果为单一碳源生长的菌株,命名为菌株LPx。根据生理生化特征和16S rRNA(GenBank Accession No.HM488993)基因序列分析,初步将该菌株鉴定为假单胞菌属(Pseudomonas sp.)。通过对其降解乐果特性研究,结果显示,菌株LPx降解乐果的最适pH为7.5、最适温度为30℃、最适接种量为10%(体积分数)。最适条件下,100 mg/L乐果可在120 h内基本被降解。菌株对乐果的降解属于高浓度底物抑制的酶促反应,vmax(不存在抑制剂时最大酶促反应速率)=0.734 d-1,km(米氏常数)=21.700 mg/L,k1(底物抑制系数)=259.215 mg/L。  相似文献   

5.
紫外催化湿式氧化工艺降解油墨废水   总被引:1,自引:1,他引:0  
为了解决传统催化湿式过氧化氢氧化技术需要高温高压等苛刻条件的问题,将紫外引入催化湿式氧化技术,得到可在常温常压条件下进行的紫外催化湿式氧化工艺(UV-CWOP)。以Cu2+为催化剂,采用该工艺处理油墨废水取得了良好的效果。通过单因素实验确定的最佳工艺条件为:pH值=3,H2O2用量为1.5倍理论量,CuSO4.5H2O投量2 g/L,初始温度40℃。在此条件下处理油墨废水3 h,COD可从9 500 mg/L降解到89 mg/L,出水达到国家《污水综合排放标准》(GB8978-1996)一级标准。  相似文献   

6.
光助Fenton氧化法降解水中六氯苯的研究   总被引:7,自引:2,他引:5  
采用光助Fenton氧化法处理六氯苯模拟废水,考察了反应时间、Fe3 与H2O2摩尔比、Fenton试剂用量、初始pH、六氯苯初始浓度、光强对六氯苯降解效果的影响,并初步探讨了六氯苯的降解动力学规律.结果表明.光助Fenton法降解六氯苯的最佳工艺条件为:紫外灯功率为300 W、Fe3 投加量为1.0 mmol/L、H2O2投加量为5.0 mmol/L、反应时间为60 min、初始pH为3,在此条件下,浓度为500μg/L的HCB的去除率可达91.3%.UV辐射与Fenton氧化对HCB的降解具有协同效应.光助Fenton法对HCB的降解符合一级反应动力学方程,表观速率常数为0.04 min-1,与Fenton法相比,提高了近9倍.  相似文献   

7.
为了获得有效降解有机磷农药乐果的微生物,采用北京大兴黄村施用过乐果的土壤为菌源,以乐果作为唯一碳源和能源分离得到5株对乐果有一定降解能力的细菌。正交实验结果显示:降解菌在温度为40℃,pH值为9,NaCl浓度为0 .5g/L条件下生长良好。  相似文献   

8.
以TiO2为催化剂、紫外灯为光源对乳酸进行光催化降解实验,考察了乳酸初始浓度、TiO2用量、反应时间、曝气方式等因素对乳酸降解率的影响,并在此基础上应用正交实验对降解条件进行优化,同时对乳酸的降解机理进行了探索研究。实验结果表明:以300 W紫外汞灯为光源,在乳酸初始浓度为0.5 g/L、TiO2量为0.20 g/L、反应时间120 min、持续通入空气鼓泡的条件下,乳酸降解效果最佳,乳酸降解率为99.9%;降解12 h总有机碳去除率达91.2%。乳酸光催化降解的反应途径为:乳酸脱羧生成乙醇,乙醇被氧化生成乙醛,进而氧化为乙酸,所有的中间产物被继续降解,最终矿化为CO2和H2O等小分子物质。  相似文献   

9.
微好氧颗粒污泥工艺能够同时进行好氧氧化和厌氧还原过程,是处理五氯酚(PCP)的理想方法.对影响好氧颗粒污泥降解PCP的因素水力学上升流速、碱加入量以及水力停留时间进行考察.结果表明,水力学上升流速为4.58 m/h,进水NaHCO3浓度为900mg/L,水力停留时间为24 h时,处理效果比较好.  相似文献   

10.
研究了臭氧对乐果的降解效果,并探讨了降解机理。考查了不同浓度的臭氧及不同的接触时间对乐果的降解情况。试验发现,当初始臭氧浓度为10mg/L时,乐果的降解在5min内就达到80%左右,延长反应时间,降解率无明显增加。通过添加重碳酸盐和叔丁醇,初步探讨了降解机理,实验表明,臭氧降解乐果是个分子臭氧反应。对处理后的水样进行GC-MS检测,发现了氧化乐果的存在,证实了臭氧处理不足的情况下会产生毒副产物。  相似文献   

11.
臭氧深度氧化法处理2,4-二氯苯氧乙酸农药废水   总被引:5,自引:1,他引:4  
对臭氧深度氧化法降解农药2,4-二氯苯氧乙酸(2,4-D)废水进行了研究。实验结果表明,紫外光催化臭氧化降解2,4-D成效显著,臭氧/紫外(UV)深度氧化法是最好的臭氧化处理方法。2,4-D200mg/L的水样,反应30min,2,4-D降解完全,75min时矿化率达75%以上。碱性反应氛围有利于臭氧化反应进行。自由基抑制剂(叔丁醇)的加入,显著降低臭氧化反应去除2,4-D的效果,自由基参与的反应历程对于2,4-D的降解十分重要。双氧水的引入对2,4-D降解无明显促进作用,这是因为双氧水分解消耗OH-,没有缓冲的反应体系pH降低,限制了双氧水的分解和.OH自由基链反应。总之,单独臭氧化对2,4-D降解有一定的反应效率,在有利于.OH产生的体系中,2,4-D降解效率进一步提高。  相似文献   

12.
活性炭吸附-Fenton氧化处理高盐有机废水   总被引:2,自引:0,他引:2  
采用活性炭吸附-Fenton氧化耦合工艺处理高盐度难降解有机废水的性能。考察了不同工艺参数对活性炭吸附及Fenton氧化对高盐有机废水处理效率的影响。结果表明,采用活性炭单独处理时,在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60 min条件下,COD去除率最大,达到47.5%。活性炭吸附处理后,废水再采用Fenton氧化处理,在FeSO4.7H2O投加量为3.0 g/L,H2O2投加量为4.7 g/L,反应时间为30 min条件下,COD去除率最大,达到84.4%。整体而言,经过活性炭吸附和Fenton氧化处理后,废水COD由初始浓度13 650 mg/L降至560 mg/L,去除率达到95.9%。活性炭吸附-Fenton氧化耦合工艺适合高盐度难降解有机废水的处理。  相似文献   

13.
混凝-Fenton氧化-Fe0还原预处理高浓度硝基苯生产废水   总被引:1,自引:1,他引:0  
采用混凝-Fenton氧化-Fe0还原工艺预处理高浓度硝基苯废水,考察各反应阶段硝基苯去除效果及影响因素。研究表明,聚铁混凝性能优于聚铝;初始COD为17 350 mg/L、硝基苯浓度为10 050 mg/L的废水,在pH=4,聚铁投加浓度3 300 mg/L时,COD和硝基苯去除率分别为63%和62%;混凝沉降后的上清液用Fenton试剂氧化,可在较宽pH(3~6)范围内降解硝基苯,当H2O2(30%)浓度为6 000 mg/L,Fe2+浓度为168 mg/L时,氧化效率最高;聚铁混凝-Fenton氧化后的出水用Fe0还原,最佳还原条件为:pH=3,Fe0浓度1 500 mg/L。原水经聚铁混凝-Fenton氧化-Fe0还原后,COD和硝基苯总去除率分别达90%和98%,总药剂成本约12.4元/t。处理后废水硝基苯浓度为168 mg/L,适宜进行后续的厌氧-好氧生物处理。  相似文献   

14.
ABR-接触氧化-化学氧化组合工艺处理垃圾渗滤液方法研究   总被引:10,自引:0,他引:10  
以垃圾渗滤液为研究对象,应用ABR 接触氧化 化学氧化组合工艺进行处理。通过分阶段污泥培养驯化以及变容积负荷进行试验研究,试验结果表明:进水有机负荷小于10 kg COD/(m3·d),好氧出水COD稳定在1 000~1 500 mg/L,去除率可以稳定在80%~85%;好氧池出水经过Fenton氧化处理,出水COD小于100 mg/L。该组合工艺对垃圾渗滤液能够进行有效处理,运行效果较好,技术上可行。  相似文献   

15.
苯酚的生物降解一直受到关注。以苯酚为惟一电子供体,研究了Shewanella sp.XB对苯酚的缺氧降解特性。研究结果表明,在反硝化条件下,当C/N为13.3时,苯酚可以完全降解,NO-2-N积累量很少。另外,当加入氧化还原介体,如核黄素3μmol/L、AQDS 0.01 mmol/L、AQS 0.05 mmol/L和LQ 0.01 mmol/L时,苯酚降解速率分别为不加介体时的1.45、1.77、1.67和1.63倍。当以氯化铵代替硝酸盐时,苯酚也能进行厌氧发酵降解。另外,菌株XB反硝化降解苯酚可能是厌氧和好氧降解的混合过程。  相似文献   

16.
针对北京等严重缺水地区提高污水综合排放标准,用于地表水和地下水补充水的需求,以强化COD、N和P去除为目的,研发了N和P不同单元处理的缺氧立体循环氧化沟单元/好氧立体循环氧化沟单元/除磷过滤器单元组合工艺,通过中试实验研究了该工艺的去除效果,并优化了该工艺水力停留时间(HRT)和溶解氧(DO)参数。结果表明,当缺氧和好氧立体循环氧化沟单元的HRT和DO分别为12 h、DO 0.5 mg/L和6 h、2.0 mg/L,除磷过滤器滤速6~8 m/h时,该工艺的平均出水浓度COD 25 mg/L,TN 11 mg/L,NH_4~+-N 1.2 mg/L,TP 0.15 mg/L,平均去除率分别为88%、57%、94%和96%。其中缺氧立体循环氧化沟单元COD、NH_4~+-N和TN平均去除率为70%、80%和57%,好氧立体循环氧化沟单元进一步去除COD和NH_4~+-N(去除率为18%和14%);经缺氧、好氧氧化沟处理去除50%左右的TP,除磷单元吸附作用去除46%的TP。经过该组合工艺处理,COD、N和P都能达到北京市2013年出台的地方污水排放新标准一级B排放要求。  相似文献   

17.
采用紫外活化过硫酸盐(UV/PS)工艺降解典型磺胺类抗生素磺胺二甲氧嘧啶(SDM),比较单一紫外(UV)、单一过硫酸盐(PS)和UV/PS对SDM的去除效果,考察各因素对降解动力学的影响,并探究其降解机理,对SDM及其中间产物进行毒性测定和风险评价.结果显示,UV/PS可以加速SDM降解,反应速率常数分别是单一UV和单...  相似文献   

18.
光催化氧化-Fenton组合方法降解高浓度正丙醇废水   总被引:1,自引:1,他引:0  
研究了1%和10%2种浓度正丙醇废水在光催化氧化-Fenton组合工艺条件下的降解情况,分别考察了H2O2加药方式及剂量、Fe2+浓度、TiO2浓度,以及废水的初始浓度对反应的影响,得到了优化工艺参数。结果显示,在23 W的低压汞灯照射下,当Fe2+离子浓度为0.44 g/L,TiO2为0.4 g/L,H2O2分6次等幅递增投加,增幅为均值的10%,投加总量至28.6 g/L时,反应6 h后,组合工艺可将1%浓度正丙醇废水的COD从17 200 mg/L降低至2 000 mg/L。H2O2总用量为136.5 g/L,其他条件及加药方式不变条件下,废水浓度提高至10%,紫外光能量利用率明显提高,反应15 h后,可将COD从172 000 mg/L降至1 000 mg/L以下,降解速率随浓度降低而下降。  相似文献   

19.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

20.
非均相催化臭氧氧化深度处理炼油废水   总被引:1,自引:0,他引:1  
采用非均相催化剂催化臭氧氧化处理炼油废水,考察了催化剂负载率、p H、催化剂投加量和臭氧投加量及反应时间对处理效果的影响。结果表明,组合工艺最佳工艺条件为:催化剂负载率2.1%、p H 9、催化剂投量80 g/L、臭氧投量8.1 mg/L、反应时间60 min,COD、石油类、NH3-N、硫化物和SS去除率分别为91.3%、92.7%、80.5%、34.5%和59%。处理炼油废水过程中组合工艺存在明显协同效应,协同因子为1.47。中间臭氧氧化和催化臭氧氧化在最优工艺条件下对炼油废水COD的降解均符合准一级动力学规律。基于叔丁醇的实验结果,结合降解动力学可以推测,降解炼油废水过程中非均相催化剂催化臭氧产生高活性羟基自由基是降解效率提高的主导因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号