首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intensive measurements of aerosol (PM10) and associated water-soluble ionic and carbonaceous species were conducted in Guangzhou, a mega city of China, during summer 2006. Elevated levels of most chemical species were observed especially at nighttime during two episodes, characterized by dramatic build-up of the biomass burning tracers levoglucosan and non-sea-salt potassium, when the prevailing wind direction had changed due to two approaching tropical cyclones. High-resolution air mass back trajectories based on the MM5 model revealed that air masses with high concentrations of levoglucosan (43–473 ng m?3) and non-sea-salt potassium (0.83–3.2 μg m?3) had passed over rural regions of the Pearl River Delta and Guangdong Province, where agricultural activities and field burning of crop residues are common practices. The relative contributions of biomass burning smoke to organic carbon in PM10 were estimated from levoglucosan data to be on average 7.0 and 14% at daytime and nighttime, respectively, with maxima of 9.7 and 32% during the episodic transport events, indicating that biomass and biofuel burning activities in the rural parts of the Pearl River Delta and neighboring regions could have a significant impact on ambient urban aerosol levels.  相似文献   

2.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples (n = 58) collected every sixth day in Xi’an, China, from 5 July 2008 to 27 June 2009 are analyzed for levoglucosan (1,6-anhydro-β-d-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m?3, with an average of 428 ± 399 ng m?3. Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 < R < 0.91) were found between levoglucosan relative to water-soluble K+, Cl?, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of 2.3% was found in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1–43.8% of OC (with an average of 17.6 ± 8.4%).

Implications:?PM2.5 levoglucosan concentrations and the correlation between levoglucosan relative to other compounds during four seasons in Xi’an showed that the influence of biomass burning is maximum during the residential heating season (winter), although some important influences may be detected in spring (field preparation burnings) and autumn (corn stalks and wheat straw burning, fallen dead leaves burning) at Xi’an and surrounding areas. Household heating with biomass during winter was quite widespread in Guanzhong Plain. Therefore, the control of biomass/biofuel combustion could be an effective method to reduce pollutant emission on a regional scale.  相似文献   

3.
The objective of this study was to investigate the organic composition of wood smoke emissions and ambient air samples in order to determine the wood smoke contribution to the ambient air pollution in the residential areas. From November 2005 to March 2006 particle-phase PM10 samples were collected in the residential town Dettenhausen surrounded by forests near Stuttgart in southern Germany. Samples collected on pre-baked glass fibre filters were extracted using toluene with ultrasonic bath and analysed by gas chromatography mass spectrometry (GC-MS). 21 polycyclic aromatic hydrocarbons (PAH) including 16 USEPA priority pollutants, different organic wood smoke tracers, primarily 21 species of syringol and guaiacol derivatives, levoglucosan and its isomers mannosan, galactosan and dehydroabietic acid were detected and quantified in this study. The concentrations of these compounds were compared with the fingerprints of emissions from hardwood and softwood combustion carried out in test facilities at Universitaet Stuttgart and field investigations at a wood stove during real operation in Dettenhausen. It was observed that the combustion derived PAH was detected in higher concentrations than other PAH in the ambient air PM10 samples. Syringol and its derivatives were found in large amounts in hardwood burning but were not detected in softwood burning emissions. On the other hand, guaiacol and its derivatives were found in both softwood and hardwood burning emissions, but the concentrations were higher in the softwood smoke compared to hardwood smoke. So, these compounds can be used as typical tracer compounds for the different types of wood burning emissions. In ambient air samples both syringol and guaiacol derivatives were found which indicates the wood combustion contribution to the PM load in such residential areas. Levoglucosan was detected in high concentrations in all ambient PM10 samples. A source apportionment modelling, Positive Matrix Factorization (PMF) was implemented to quantify the wood smoke contribution to the ambient PM10 bound organic compounds in the residential area.  相似文献   

4.
The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K+ as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0–16.8% and 4.0–19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.  相似文献   

5.
The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM10 filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6?%. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.  相似文献   

6.
Abstract

Levels of the monosaccharide anhydride (MA) levoglucosan and its isomeric compounds galactosan and mannosan were quantified in the PM10 fraction (particulate matter ≤10 µm in aerodynamic diameter) of ambient aerosols from an urban (Oslo) and a suburban (Elverum) site in Norway, both influenced by small-scale wood burning. MAs are degradation products of cellulose and hemicellulose, and levoglucosan is especially emitted in high concentrations during pyrolysis and combustion of wood, making it a potential tracer of primary particles emitted from biomass burning. MAs were quantified using a novel high-performance liquid chromatography/ high-resolution mass spectrometry-time of flight method. This approach distinguishes between the isomeric compounds of MAs and benefits from the limited sample preparation required before analysis, and no extensive derivatization step is needed. The highest concentrations of levogucosan, galactosan, and mannosan (∑MA) were recorded in winter because of wood burning for residential heating (∑MAMAX = 1,240 ng m-3). This finding was substantiated by a relatively high correlation (R2 = 0.64) between the levoglucosan concentration and decreasing ambient temperature. At the suburban site, ∑MA accounted for 3.1% of PM10, whereas the corresponding level at the urban site was 0.6%. The mass size distribution of MAs associated with atmospheric aerosols was measured using a Berner cascade impactor. The size distribution was characterized with a single mode at 561 nm. Ninety-five percent of the mass concentration of the MAs was found to be associated with particles <2 µm. A preliminary attempt to estimate the contribution of wood burning to the mass concentration of PM10 in Oslo using levoglucosan as a tracer indicates that 24% comes from wood burning. This is approximately a factor of 2 lower than estimated by the AirQUIS dispersion model.  相似文献   

7.
A comprehensive air quality modeling project was carried out to simulate regional source contributions to secondary and total (=primary + secondary) airborne particle concentrations in California's Central Valley. A three-week stagnation episode lasting from December 15, 2000 to January 7, 2001, was chosen for study using the air quality and meteorological data collected during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS). The UCD/CIT mechanistic air quality model was used with explicit decomposition of the gas phase reaction chemistry to track source contributions to secondary PM. Inert artificial tracers were used with an internal mixture representation to track source contributions to primary PM. Both primary and secondary source apportionment calculations were performed for 15 size fractions ranging from 0.01 to 10 μm particle diameters. Primary and secondary source contributions were resolved for fugitive dust, road dust, diesel engines, catalyst equipped gasoline engines, non-catalyst equipped gasoline engines, wood burning, food cooking, high sulfur fuel combustion, and other anthropogenic sources.Diesel engines were identified as the largest source of secondary nitrate in central California during the study episode, accounting for approximately 40% of the total PM2.5 nitrate. Catalyst equipped gasoline engines were also significant, contributing approximately 20% of the total secondary PM2.5 nitrate. Agricultural sources were the dominant source of secondary ammonium ion. Sharp gradients of PM concentrations were predicted around major urban areas. The relative source contributions to PM2.5 from each source category in urban areas differ from those in rural areas, due to the dominance of primary OC in urban locations and secondary nitrate in the rural areas. The source contributions to ultra-fine particle mass PM0.1 also show clear urban/rural differences. Wood smoke was found to be the major source of PM0.1 in urban areas while motor vehicle sources were the major contributor of PM0.1 in rural areas, reflecting the influence from two major highways that transect the Valley.  相似文献   

8.
ABSTRACT

In order to evaluate the spatial variation of aerosol (particulate matter with aerodynamic diameter ≤10 μm [PM10]) and ozone (O3) concentrations and characterize the atmospheric conditions that lead to O3 and PM10-rich episodes in southern Italy during summer 2007, an intensive sampling campaign was simultaneously performed, from middle of July to the end of August, at three ground-based sites (marine, urban, and high-altitude monitoring stations) in Calabria region. A cluster analysis, based on the prevailing air mass backward trajectories, was performed, allowing to discriminate the contribution of different air masses origin and paths. Results showed that both PM10 and O3 levels reached similar high values when air masses originated from the industrialized continental Europe as well as under the influence of wildfire emissions. Among natural sources, dust intrusion and wildfire events seem to involve a marked impact on the recorded data. Typical fair weather of Mediterranean summer and persisting anticyclone system at synoptic scale were indeed favorable conditions to the arrival of heavily dust-loaded air masses over three periods of consecutive days and more than half of the observed PM10 daily exceedances have been attributed to Saharan dust events. During the identified dust outbreaks, a consistent increase in PM10 levels with a concurrent decrease in O3 values was also observed and discussed.

IMPLICATIONS In the summertime, the central-southern Mediterranean Basin is heavily affected by Saharan dust outbreaks and wildfire events. A focus on their significant influence on either oxidizing capacity of the atmosphere and air quality over Calabria, southern Italy, was here presented. Similar studies for most regions surrounding the Mediterranean Basin are needed to implement effective emission reduction measures, to prevent apparent air quality parameter exceedances and to define an appropriate health alert system. Because the frequency of these events is expected to increase due to climate change, these studies could even be a valid effort to better understand and characterize such atmospheric variations.  相似文献   

9.
The Mediterranean basin, because of its semi-enclosed configuration, is one of the areas heavily affected by air pollutants. Despite implications on both human health and radiative budget involving an increasing interest, monitoring databases measuring air pollution directly over this area are yet relatively limited. Owing to this context, concentrations of fine (PM2.5) and coarse (PM2.5–10) particles along with other ancillary data, such as ozone levels and meteorological parameters, were measured during six cruise campaigns covering almost the whole Mediterranean basin. Elemental composition of both PM2.5 and PM2.5–10 was also determined to identify specific tracers for different classes of particles that can be found in the Mediterranean atmosphere. Outcomes resulting from the integration of a preliminary qualitative examination with a more quantitative analysis, based on receptor modelling, suggested that European continental influence, Saharan dust outbreaks, wildfire events, sea spray and fossil fuel combustion were the leading causes of the aerosol-ozone variations within the Mediterranean basin. Shipping emissions, consisting in both local harbours and maritime traffic across the basin, were also tested using the marker ratio of V/Ni. Peak values observed for coarse fraction have shown to be driven by the occurrence of African dust events. Considering the major influence of Continental pollution and wildfire events, the spatial variability resulted in larger fine particle concentrations and higher ozone levels over the Eastern Mediterranean side in comparison to the Western one.  相似文献   

10.
In the two biggest New Zealand cities, Auckland and Christchurch, the mass concentration of the PM10 atmospheric aerosol can exceed the 50 microg m(-3) 24 h health guideline in winter. This high pollution level is thought to be caused mainly by old-fashioned domestic heating systems based on wood combustion. Therefore the chemistry of the carbonaceous aerosol has been investigated in several high-pollution level urban situations in order to assess the origin of the pollution. All the high concentration organic tracers, including levoglucosan and dehydroabietic acid, were characteristic for biomass burning. The findings have confirmed via advanced chemical analytical methods that domestic heating can be the main contributor to the high level of wintertime pollution, especially in Christchurch. The results are of great importance in supporting the ambition of authorities and environmental associations to change the domestic heating regimes.  相似文献   

11.
Residential woodstoves are the single largest source of PM2.5 in Libby, MT, resulting in the community being designated as a nonattainment area for PM2.5. Beginning in 2005, a community-wide woodstove changeout program was implemented that replaced nearly 1200 old stoves with EPA-certified units. In an effort to track the reduction of woodsmoke particles throughout the program, ambient PM2.5 samples were collected before, during, and after the changeout. These samples were analyzed for seven selected woodsmoke tracers, including vanillin, acetovanillone, guaiacol, 4-ethylguaiacol (methoxyphenols), levoglucosan (sugar anhydride), abietic acid, and dehydroabietic acid (resin acids). Results of the changeout showed that PM2.5 levels decreased by 20% during the changeout period, while levels of the seven chosen tracer compounds gave variable responses. Levoglucosan levels decreased by 50% while both resin acids increased after the changeout, suggesting a change in the chemistry of the particles. No trend was observed in the levels of methoxyphenols as a group over the changeout period. The results suggest that the concentrations of woodsmoke related PM2.5 in the Libby airshed have decreased; however, the chemistry of the emitted particles also changed when old woodstoves were replaced with new EPA-certified stoves.  相似文献   

12.
Water-soluble organic compounds (WSOCs), represented by anhydro-saccharides, dicarboxylic acids, and polyols, were analyzed by gas chromatography interfaced to mass spectrometry in extracts from 103 PM1 and 22 PM2.5 filter samples collected in an urban background and road site in Barcelona (Spain) and an urban background site in Los Angeles (USA), respectively, during 1-month intensive sampling campaigns in 2010. Both locations have similar Mediterranean climates, with relatively high solar radiation and frequent anti-cyclonic conditions, and are influenced by a complex mixture of emission sources. Multivariate curve resolution-alternating least squares analyses were applied on the database in order to resolve differences and similarities in WSOC compositions in the studied sites. Five consistent clusters for the analyzed compounds were obtained, representing primary regional biomass burning organic carbon, three secondary organic components (aged SOC, isoprene SOC, and α-pinene SOC), and a less clear component, called urban oxygenated organic carbon. This last component is probably influenced by in situ urban activities, such as food cooking and traffic emissions and oxidation processes.  相似文献   

13.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

14.
Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM10 concentrations above 150 μg m?3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM10 observations during September–November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM10, and 40% of PM10 for days with 24-h average concentrations above 150 μg m?3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.  相似文献   

15.
In order to determine the pollution sources in a suburban area and identify the main direction of their origin, PM2.5 was collected with samplers coupled with a wind select sensor and then subjected to Positive Matrix Factorization (PMF) analysis. In each sample, soluble ions, organic carbon, elemental carbon, levoglucosan, metals, and Polycyclic Aromatic Hydrocarbons (PAHs) were determined. PMF results identified six main sources affecting the area: natural gas home appliances, motor vehicles, regional transport, biomass combustion, manufacturing activities, and secondary aerosol. The connection of factor temporal trends with other parameters (i.e., temperature, PM2.5 concentration, and photochemical processes) confirms factor attributions. PMF analysis indicated that the main source of PM2.5 in the area is secondary aerosol. This should be mainly due to regional contributions, owing to both the secondary nature of the source itself and the higher concentration registered in inland air masses. The motor vehicle emission source contribution is also important. This source likely has a prevalent local origin. The most toxic determined components, i.e., PAHs, Cd, Pb, and Ni, are mainly due to vehicular traffic. Even if this is not the main source in the study area, it is the one of greatest concern. The application of PMF analysis to PM2.5 collected with this new sampling technique made it possible to obtain more detailed results on the sources affecting the area compared to a classical PMF analysis.  相似文献   

16.
Abstract

Particulate matter (PM) less than 2.5 μm in size (PM2.5)source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH4HSO4, (NH4)2SO4,NH4NO3, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority (<50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local.  相似文献   

17.
Anhydrosugars (levoglucosan, mannosan and galactosan) were investigated during one year in three Austrian regions at three types of sites (city-heavy traffic-impacted, city-residential and background) in order to assess the magnitude of the contribution of wood smoke to the particulate matter load and its organic fraction. The annually averaged concentrations of levoglucosan ranged from 0.12 to 0.48 μg m?3. The levoglucosan concentration exhibited a strong annual cycle with higher concentrations in the cold season. The minor anhydrosugars had a similar annual trend, but their concentrations were lower by a factor of about 5 and about 25 in the cold season for mannosan and galactosan, respectively. Levoglucosan concentrations were higher at the inner-urban as compared to rural sites. The contribution of wood smoke to organic carbon and PM10 levels was calculated using a constant ratio of levoglucosan and OC, respectively PM10 as derived for fire wood typical for Alpine European regions [Schmidl, C., Marr, I.L., Caseiro, A.e, Kotianová, P., Berner, A., Bauer, H., Kasper-Giebl, A., Puxbaum, H., 2008a. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environment 42, 126–141]. The estimated contribution of wood smoke-OC to the OC of PM10 ranged from one third to more than half in the cold season with higher contributions up to 70% in winter (December, January and February) in the smaller cities and the rural background. This indicates, that wood smoke is the predominant source of organic material at rural and small urban sites in central Europe. Consistently, wood smoke was an important contributor to PM10 during the cold season, with contributions of around 10% in the Vienna larger region and around 20% at rural sites in the densely forested regions of Salzburg and Styria during the winter months. In those regions residential sites exhibited highest relative wood smoke contents in PM10 during autumn (September till November), indicating the use of wood stoves for auxiliary heating in the transition of warm to cold season. Using the relationships between the different anhydrosugars the combustion of softwood was found to be dominant for the wood smoke occurrence in ambient air at the investigated sites. Potassium, a commonly used tracer for biomass burning, correlated well to levoglucosan, with a mass ratio of around 0.80 in the cold season.  相似文献   

18.
Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter?<?10 μm (PM10) and their spatio-temporal distribution were determined for later use in a pediatric asthma panel study in an Alpine village. PM10 sources were identified by positive matrix factorization using chemical trace elements, elemental, and organic carbon from daily PM10 filters collected between November 2007 and June 2009 at seven locations within the village. Of the nine sources identified, four were directly road traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust.  相似文献   

19.
This paper is a continuation of our previous publication (Bari, M.A., Baumbach, G., Kuch, B., Scheffknecht, G., 2009. Wood smoke as a source of particle-phase organic compounds in residential areas. Atmospheric Environment 43, 4722–4732) and describes a detailed characterisation of different particle-phase wood smoke tracer compounds in order to find out the impact of wood-fired heating on ambient PM10 pollution in a residential area near Stuttgart in southern Germany. The results from previous flue gas measurements help distinguishing different tracer compounds in ambient PM10 samples. In the residential area, significant amounts of hardwood markers (syringaldehyde, acetosyringone, propionylsyringol, sinapylaldehyde) and low concentrations of softwood markers (vanillin, acetovanillone, coniferyldehyde, dehydroabietic acid, retene) were found in the ambient air. The general wood combustion markers Levoglucosan, mannosan and galactosan were detected in high concentrations in all particle-phase PM10 samples. To find out the size distribution of ambient particles, cascade impactor measurements were carried out. It was found that more than 70% of particulate matter was in the particle diameter of less than 1 μm. Using emission ratio of levoglucosan to PM10, it can be demonstrated that during winter months 59% of ambient PM10 pollution could be attributed to residential wood-fired heating.  相似文献   

20.
The objective of this study was to describe the ambient levels of particulate matter (PM) and its influence to air quality situation on the dry Mediterranean island of Cyprus. From October 2002 to August 2003 PM10 and PM2.5 samples were collected at 31 different sampling sites in Cyprus. In addition, continuous measurements of PM10 were carried out from 2003 to 2007 at a traffic and a rural site. It can be recognised that at all traffic and at some residential and urban background sites, the actual EU limit values have been exceeded. Special events e.g. long-range transport of Sahara dust storms were recorded over urban as well as rural areas in the order of 6–8 events per year, with a major frequency in summer and spring periods. The comparison of the PM10 concentrations in Cyprus cities with values of other European cities demonstrates the PM10 problem in Cyprus, especially in the dry summer season, when no rain is cleaning the air and the dry surfaces. This underlines the necessity of PM abatement strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号