首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of diethyl phthalate (DEP) photoinduced by Fe(III) in aqueous solutions has been investigated under solar irradiation in the compound parabolic collector reactor at Plataforma Solar de Almeria. Hydroxyl radicals *OH, responsible of the degradation, are formed via an intramolecular photoredox process in the excited state of Fe(III) aquacomplexes. The primary step of the reaction is mainly due to the attack of *OH radicals on the aromatic ring. For prolonged irradiations DEP and its photoproducts are completely mineralized due to the regeneration of the absorbing species and the continuous formation of *OH radicals that confers a catalytic aspect to the process. Consequently, the degradation photoinduced by Fe(III) could be an efficient method of DEP removal from water.  相似文献   

2.
The behaviour of 4,4′-bis(2-sulfostyryl)biphenyl (DSBP), a fluorescent whitening agent, was investigated in the presence of Fe(III) aquacomplexes at room temperature. In the dark, a two-step reaction was observed when adding Fe(III) to a solution of DSBP: an initial fast redox reaction between DSBP and the monomeric species Fe(OH)2+ and a slower reaction leading to the coagulation of oxidised DSBP and iron. This phenomenon is due to the formation of a complex or an ion-pair between Fe(II) and/or Fe(III) with oxidised DSBP and it probably occurs by charge neutralisation in our experimental conditions. The precipitation of DSBP depends on the initial concentration in Fe(OH)2+ and is achieved for a ratio [Fe(OH) 2+]/[DSBP] of 5 approximately. Under irradiation at 365 nm, a complicated behaviour was observed: a complexation of iron by oxidised DSBP favoured by irradiation and a degradation of DSBP induced by an intramolecular electron transfer in the complex or by a photoredox of Fe(OH)2+ species generating OH radicals in the supernatant. The complete degradation of DSBP is reached four times faster in the presence of Fe(III) with respect to the direct photolysis of DSBP alone. Moreover, the total mineralization of DSBP obtained in less than 120 h upon irradiation at 365 nm is only observed in the presence of the ferric ions, enlightening the efficiency of the method involving Fe(III) and UV irradiation.  相似文献   

3.
Mailhot G  Asif A  Bolte M 《Chemosphere》2000,41(3):363-370
The Fe(III)-photoinduced degradation of 4-dodecylbenzenesulphonate (DBS) in aqueous solution was investigated. The mixing of DBS (1 mm) and Fe(III) (1 mm) solutions immediately led to the formation of a precipitate that contained DBS and monomeric Fe(OH)2+, the predominant Fe(III) species. Both species were also present in the supernatant. Irradiation of the supernatant solution resulted in a photoredox process that yielded Fe(II) and *OH radicals. The disappearance of DBS was shown to involve only attack by *OH radicals; the quantum yield of DBS disappearance is similar to the quantum yield of *OH radical formation. A wavelength effect was also observed; the rate of DBS disappearance was higher for shorter wavelength irradiation. Five photoproducts, all containing the benzene sulphonate group, were identified. *OH radicals preferentially abstract hydrogen from the carbon in the alpha position of the aromatic ring. The results show that the Fe(III)-photoinduced degradation of DBS could be used as an alternative method for polluted water treatment.  相似文献   

4.
Background For their high photoreactivity, Fe(III)-carboxylate complexes are important sources of H2O2 for some atmospheric and surface waters. Citrate is one kind of carboxylate, which can form complexes with Fe(III). In our previous study, we have applied Fe(III)-citrate complexes to degrade and decolorize dyes in aqueous solutions both under UV light and sunlight. Results have shown that carboxylic acids can promote the photodegradation efficiency. It is indicated that the photolysis of Fe(III)-citrate complexes may cause the formation of some reactive species (e. g. H2O2 and ·OH). This work is attempted to quantify hydroxyl radicals generated in the aqueous solution containing Fe(III)-citrate complexes and to interpret the photoreactivity of Fe(III)-citrate complexes for degrading organic compounds. Methods By using benzene as the scavenger to produce phenol, the photogeneration of ·OH in the aqueous solution containing Fe (III)-citrate complexes was determined by HPLC. Results and Discussion In the aqueous solution containing 60.0/30.0 mM Fe(III)/citrate and 7.0 mM benzene at pH 3.0, 96.66 mM ·OH was produced after irradiation by a 250W metal halide light (l ≥ 313 nm) for 160 minutes. Effects of initial pH value and concentrations of Fe(III) and citrate on ·OH radical generation were all examined. The results show that the greatest photoproduction of ·OH in the aqueous solution (pH ranged from 3.0 to 7.0) was at pH 3.0. The photoproduction of ·OH increased with increasing Fe(III) or citrate concentrations. Conclusion In the aqueous solutions containing Fe(III)-citrate complexes, ·OH radicals were produced after irradiation by a 250W metal halide light. It can be concluded that Fe(III)-citrate complexes are important sources of ·OH radicals for some atmospheric and surface waters. Recommendations and Outlook It is believed that the photolysis of Fe(III)-citrate complexes in the presence of oxygen play an important role in producing ·OH both in atmospheric waters and surface water where high concentrations of ferric ions and citrate ions exist. The photoproduction of ·OH has a high oxidizing potential for the degradation of a wide variety of natural and anthropogenic organic and inorganic substances. We can use this method for toxic organic pollutants such as organic dyes and pesticides.  相似文献   

5.
Mineralisation of Monuron photoinduced by Fe(III) in aqueous solution   总被引:1,自引:0,他引:1  
The degradation of Monuron (3-(4-chlorophenyl)-1,1-dimethylurea) photoinduced by Fe(III) in aqueous solution has been investigated. The rate of degradation depends on the concentration of Fe(OH)2+, the most photoreactive species in terms of *OH radical formation. These *OH radicals are able to degrade Monuron until total mineralisation. The primordial role of the speciation of Fe(III)-hydroxy complex in aqueous solution, for the efficiency of the elimination of pollutant, was shown and explained in detail. The formation of Fe(II) in the irradiated solution was monitored and correlated with the total organic carbon evolution. Degradation photoproducts were identified and a mechanism of degradation is proposed.  相似文献   

6.
Brand N  Mailhot G  Bolte M 《Chemosphere》2000,40(4):395-401
The photoinduced degradation of an alcohol ethoxylate (AE) (Brij 30) by Fe(III) in aqueous solution has been investigated. The study was carried out with the major fraction of ethoxymers having an alkyl chain length of 12 carbon atoms and n ethoxy units E (C12En). The Fe(III) sensitised degradation of this fraction occurs efficiently at 365 nm. The rate of degradation depends on the concentration of Fe(OH)2+, the most photoreactive species in terms of .OH radical formation. Formate ethoxylates were identified as photoproducts and shortening of the ethoxylated chain all along the degradation process was observed. The mechanism of Brij 30 degradation implies a major .OH radicals attack on the polyethoxylated chain. For prolonged irradiations, the total degradation of Brij 30 and of the photoproducts is obtained. Consequently, the degradation photoinduced by iron (III) could be an efficient method of AEs removal in water.  相似文献   

7.
Light-induced disappearance of nitrite in the presence of iron (III)   总被引:1,自引:0,他引:1  
Zhang H  Bartlett RJ 《Chemosphere》2000,40(4):411-418
Understanding of rapid disappearance of nitrite in natural waters and its impact on nitrogen natural cycling has remained limited. We found that NO2- disappeared rapidly in pH 3.2 aqueous Fe(III) solutions both in sunlight and in 356 nm light. Quantum yields of the NO2- loss at 356 nm were 0.049-0.14 for initial levels of 10-80 microns NO2- and 200 microns Fe(III). The NO2- loss (at 356 nm) followed apparent first-order kinetics. The rate constants were 1.3 x 10(-3) (40 microns NO2-) and 4.1 x 10(-4) s-1 (80 microns NO2-) for 100 microns Fe(III), and 2.3 x 10(-3) (40 microns NO2-) and 7.5 x 10(-4) s-1 (80 microns NO2(-1)) for 200 microns Fe(III) (t1/2 = 8.7, 27.9, 5.1, and 15.3 min, respectively). The rate constants were directly proportional to [Fe(III)]0 and inversely proportional to [NO2-]0. Agreement between the rate constants obtained experimentally and those calculated mechanistically supports the hypothesis that NO2- was oxidized to NO2 by .OH radicals from photolysis of FeOH2+ complexes, and at high [NO2-]0 (e.g., 80 microns) relative to [Fe(III)]0, hydrolysis of NO2 or N2O4 to form NO3- and NO2- could be significant. This study showed that light and Fe(III)-induced oxidation of NO2- (rate = approximately 10(-1)-10(-2) microns s-1) was more rapid than its direct photolysis (rate = approximately 10(-4) microns s-1), and the photolysis could be a significant source of .OH radicals only in cases where the Fe(III) level is much lower than the NO2- level ([Fe(III)]/[NO2-] < 1/80). This study suggests that the light and Fe(III)-induced oxidation of NO2- would be one potential important pathway responsible for the rapid transformation of NO2- in acidic surface waters, especially those affected by acid-mine drainage or volcanic activities. This study also may be of interest for modeling certain acidic atmospheric water environments.  相似文献   

8.
Gallard H  De Laat J 《Chemosphere》2001,42(4):405-413
The rates of degradation of 1,2,4-trichlorobenzene (TCB), 2,5-dichloronitrobenzene (DCNB), diuron and isoproturon by Fe(II)/H2O2 and Fe(III)/H2O2 have been investigated in dilute aqueous solution ([Organic compound]0 approximately 1 microM, at 25.0 +/- 0.2 degrees C and pH < or = 3). Using the relative rate method with atrazine as the reference compound, and the Fe(II)/H2O2 (with an excess of Fe(II)) and Fe(III)/H2O2 systems as sources of OH radicals, the rate constants for the reaction of OH* with TCB and DCNB were determined as (6.0 +/- 0.3)10(9) and (1.1 +/- 0.2)10(9) M(-1) s(-1). Relative rates of degradation of diuron and isoproturon by Fe(II)/H2O2 were about two times smaller in the absence of dissolved oxygen than in the presence of oxygen. These data indicate that radical intermediates are reduced back to the parent compound by Fe(II) in the absence of oxygen. Oxidation experiments with Fe(III)/H2O2 showed that the rate of decomposition of atrazine markedly increased in the presence of TCB and this increase has been attributed to a regeneration of Fe(II) by oxidation reactions of intermediates (radical species and dihydroxybenzenes) by Fe(III).  相似文献   

9.
Katsumata H  Kaneco S  Suzuki T  Ohta K  Yobiko Y 《Chemosphere》2007,69(8):1261-1266
2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TeCDD) was rapidly decreased by sonication in aqueous solution. The degradation efficiency was strongly influenced by ultrasonic power and reaction temperature. An initial 2,3,7,8-TeCDD concentration of 20 ng l(-1) was completely degraded within 60 min under sonochemical conditions using a 20 kHz frequency with a 150 W ultrasound power. The activation energy is 21.9 kJ/mol in the temperature range of 10-40 degrees C, suggesting a diffusion-controlled reaction. To increase the efficiency of 2,3,7,8-TeCDD treatment, degradation system combined ultrasound with Fe(III) (2 x 10(-4)mol l(-1)) and UV irradiation. Both UV and Fe(III) induced Fenton, Fenton-like and photo-Fenton reactions, leading to additional OH radicals and rapid 2,3,7,8-TeCDD removal.  相似文献   

10.
The mechanisms of the interactions between Fe(III) aquacomplexes and surfactants were investigated; three alkylbenzenzsulfonates, two surfactants (octylbenzenesulfonate (OBS) and dodecylbenzenesulfonate (DBS)), and a shorter derivative (ethylbenzenesulfonate (EBS)) were studied. The results with OBS show evidence for three different ways in which Fe(III) interferes with the surfactant: the widely described flocculation process, complexation of Fe(OH)2+ (aquacomplexes) by the surfactant, and a redox reaction. The formation of a weak complex is maximum for a ratio of three between the monomeric aquacomplex [FeOH(H2O)5]2+ and OBS. In the presence of oxygen, an intramolecular redox reaction occurs inside the complex. The interaction between commercial DBS and Fe(III) was also investigated. Immediate precipitation occurred, mainly involving derivatives of higher molecular weights that are contained in the DBS samples. The constituents with the shortest alkyl chain were not affected by the presence of Fe(III) as it was also observed with EBS.  相似文献   

11.
A study was conducted to explore some of the basic processes of polychlorinated biphenyl (PCB) destruction by a new technology termed electrochemical peroxidation process (ECP). ECP represents an enhancement of the classic Fenton reaction (H2O2 + Fe2+) in which iron is electrochemically generated by steel electrodes. Focus was on the extent of adsorption of a mixture of Aroclor 1248 on steel electrodes in comparison to iron filings. Commercially available zero-valent iron filings rapidly adsorbed PCBs from an aqueous solution of Aroclor 1248. Within 4 h, all the PCBs were adsorbed at 1%, 5%, and 10% Fe0 (w/v) concentrations. Little difference in adsorption was found between acidic (2.3) and unamended solutions (pH 5.5), even though significant differences in iron oxidation state and Fe2+ concentrations were measured in solution. PCB adsorption also occurs on steel electrodes regardless of the pH or electric current applied (AC or DC), suggesting the combination of oxidizing (free radical-mediated reactions) and reducing (dechlorination reactions) iron-mediated degradation pathways may be possible. Extraction of the iron powder after 48 h of contact time yielded the progressive recovery of biphenyl with increasing Fe mass(from 0.4% to 3.5%) and changes of the PCB congener-specific pattern as a consequence of dechlorination. A variety of daughter congeners similar to those accumulated during anaerobic microbial dechlorination of Aroclor 1248 in contaminated sediments indicate preferential removal of meta- and para-chlorines.  相似文献   

12.
Iron-catalyzed oxidation of As(III) to As(V) can be highly effective for toxic arsenic removal via Fenton reaction and Fe(II) oxygenation. However, the contribution of ubiquitous organic ligands is poorly understood, despite its significant role in redox chemistry of arsenic in natural and engineered systems. In this work, selected naturally occurring organic ligands and synthetic ligands in co-oxidation of Fe(II) and As(III) were examined as a function of pH, Fe(II), H2O2, and radical scavengers (methanol and 2-propanol) concentration. As(III) was not measurably oxidised in the presence of excess ethylenediaminetetraacetic acid (EDTA) (i.e. Fe(II):EDTA < 1:1), contrasting with the rapid oxidation of Fe(II) by O2 and H2O2 at neutral pH under the same conditions. However, partial oxidation of As(III) was observed at a 2:1 ratio of Fe(II):EDTA. Rapid Fe(II) oxidation in the presence of organic ligands did not necessarily result in the coupled As(III) oxidation. Organic ligands act as both iron speciation regulators and radicals scavengers. Further quenching experiments suggested both hydroxyl radicals and high-valent Fe species contributed to As(III) oxidation. The present findings are significant for the better understanding of aquatic redox chemistry of iron and arsenic in the environment and for optimization of iron-catalyzed arsenic remediation technology.  相似文献   

13.
Maas Pv  Brink Pv  Klapwijk B  Lens P 《Chemosphere》2009,75(2):243-249
BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound.  相似文献   

14.
Lee C  Yoon J 《Chemosphere》2004,57(10):1449-1458
The determination of quantum yields for the photolysis of Fe(III)-hydroxo complexes is important for the quantitative investigation of hydroxyl radical (*OH) production, not only in a natural water body, but also in the photo-Fenton process. A novel kinetic method, using a *OH probe compound, was established for the determination of the quantum yields in this study. The method was based on measuring the pseudo-first-order rate constant of the photodecomposition of dimethylsulfoxide (DMSO) in which DMSO and its primary products scavenged the *OH at an identical rate. The preliminary experiments for the photodecomposition kinetics supported the suitability of DMSOs as a probe compound for determining quantum yields. The individual quantum yields for the photolysis of the monomeric Fe(III) complexes, in the wavelength range 240-380 nm, were determined by the photodecomposition kinetics of the hydroxyl radical (*OH) probe compound (DMSO). The determined values of the individual quantum yields were 0.046+/-0.00052 for Fe3+ (H2O)6 (hexaaquo ion) and 0.69+/-0.025 for Fe(OH)2+ (H2O)5 (hydroxypentaaquo ion) at 254 nm, and showed decreasing values with increasing wavelength, in the ranges of 240-380 nm. The quantum yields between 240 and 280 nm were newly reported in this study, and the values obtained between 280 and 380 nm were in good agreement with the literature values.  相似文献   

15.
16.
The redox process between iron(III) (in dissolved form and as the mineral phase ferrihydrite) and phenolic substances has been examined. We investigated the relationship between the structure and reactivity for the dihydrobenzene reductants catechol, hydroquinone and resorcine, and for the 2-methoxyphenol guaiacol with iron(III), by determining the rate of the Fe(III) reduction as well as the production of CO2. This work demonstrates that catechol and guaiacol will be effectively oxidized to CO2 by reducing iron(III). Hydroquinone shows a reduction of iron(III), but no accompanying mineralization could be determined. In contrast, resorcine showed no reaction with Fe(II). The deciding factor on whether or not mineralization occurs were controlled by the position of the hydroxy groups. It is shown that phenolic substances with two hydroxy groups in the orthoposition or at least one hydroxy group and a methoxy group can be oxidized to CO2 while iron(III) is reduced.  相似文献   

17.
Lee C  Yoon J 《Chemosphere》2004,56(10):923-934
The thermal enhancement of the formation of *OH by the hv/Fe(III)/H2O2 system (including the Fe(III)/H2O2 system) was quantitatively investigated with reaction temperatures ranging from 25 to 50 degrees C. A temperature dependent kinetic model for the hv/Fe(III)/H2O2 system, incorporating 12 major reactions with no fitted rate constants or activation energies, was developed, and successfully explained the experimental measurements. Particularly, the thermal enhancement of Fe(OH)2+ photolysis which is the most significant step in the hv/Fe(III)/H2O2 system was effectively explained by two factors; (1) the variation of the Fe(OH)2+ concentration with temperature, and (2) the temperature dependence of the quantum yield for Fe(OH)2+ photolysis (measured activation energy=11.4 kJ mol(-1)). Although in both the hv/Fe(III)/H2O2 and Fe(III)/H2O2 systems, elevated temperatures enhanced the formation of *OH, the thermal enhancement was much higher in the dark Fe(III)/H2O2 system than the hv/Fe(III)/H2O2 system. Furthermore, it was found that the relative thermal enhancement of the formation of *OH in the presence of *OH scavengers (tert-butyl alcohol) was magnified in the Fe(III)/H2O2 system but was not in the hv/Fe(III)/H2O2 system.  相似文献   

18.
Dissolved silica species are naturally occurring, ubiquitous groundwater constituents with corrosion-inhibiting properties. Their influence on the performance and longevity of iron-based permeable reactive barriers for treatment of organohalides was investigated through long-term column studies using Connelly iron as the reactive medium. Addition of dissolved silica (0.5 mM) to the column feed solution led to a reduction in iron reactivity of 65% for trichloroethylene (TCE), 74% for 1,1,2-trichloroethane (1,1,2-TCA), and 93% for 1,1,1-trichloroethane (1,1,1-TCA), compared to columns operated under silica-free conditions. Even though silica adsorption was a gradual process, the inhibitory effect was evident within the first week, with subsequent decreases in reactivity over 288 days being relatively minor. Lower concentrations of dissolved silica species (0.2 mM) led to a lesser decrease (70%) in iron reactivity toward 1,1,1-TCA. The presence of dissolved silica species produced a shift in TCE product distribution toward the more highly chlorinated product cis-dichloroethylene (cis-DCE), although it did not appear to alter products originating from the trichloroethanes. The major corrosion products identified were magnetite (Fe3O4) or maghemite (gamma-Fe2O3) and carbonate green rust ([Fe4(2+)Fe(2)3+(OH)12][CO(3).2H2O]). Iron carbonate hydroxide (Fe(II)1.8Fe(III)0.2(OH)2.2CO3) was only found in the silica-free column, indicating that silica may hinder its formation. A comparison with columns operated under the same conditions, but using Master Builder iron as the reactive matrix, showed that Connelly iron is initially less reactive, but performs better than Master Builder iron over 288 days.  相似文献   

19.
Ross DS  Bartlett RJ  Zhang H 《Chemosphere》2001,44(4):827-832
We found that light-induced Fe(III) reduction associated with the oxidation of a simple hydroxy-carboxylic acid (lactate) caused the formation of the AlO4Al12(OH)24(H2O)12 polycation ("Al13"). Initial conditions were a lactate:Al:Fe ratio of 1:0.76:0.11 in a partially neutralized solution. Base was added rapidly and no Al13 was detected in samples kept in the dark. With exposure to light, Fe(III) reduction was rapid and Fe(II) reached a maximum within 1 day. After the maximum, steady-state Fe(II) declined from 54% to 43% over eight days. During this same time period, the lactate concentration fell to 2% of the original, pH rose from 4.05 to 4.46, and the Al13 detectable by 27Al NMR increased to 2.3 mmol l(-1) (51% of the total solution Al). The formation of Al13 is attributed to the pH rise resulting from the removal of the organic acid buffer. Similar photo-induced chemical changes occur in natural waters and may promote the formation of Al13, conditions permitting.  相似文献   

20.
The present work compares the efficiency of homogenous Fenton and photo-Fenton processes in the presence of Fe(III)–EDDS complex under different experimental conditions. 4-tert-Butylphenol (4-t-BP), which is one of the endocrine disrupting chemicals, was used as a model pollutant to investigate the Fenton and photo-Fenton application. The efficiency of homogenous photo-Fenton process was significantly much higher than homogenous Fenton process, which is due to the rapid formation of Fe2+ under UV irradiation of the iron complex and the photochemical formation of HO? from the photolysis of the complex Fe(III)–EDDS. Through the degradation of 4-t-BP, the effect of Fe(III)–EDDS concentration, H2O2 concentration, pH, and oxygen was investigated in both processes. Such trend was also correlated with pH calculating the polychromatic Fe2+ quantum yield formation at pH 4.0, 6.0, and 8.6. The results showed that at high Fe(III)–EDDS and H2O2 concentrations, a negative effect was found. By the way, the Fenton process was found to be enhanced at basic pH. These results can be very useful for the use and optimization of such iron complex in water treatment process as function of different physico-chemical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号