首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Solid phase microextraction (SPME) presents many advantages over conventional analytical methods by combining sampling, preconcentration, and direct transfer of the analytes into a standard gas chromatograph (GC). Since its commercial introduction in the early 1990s, SPME has been successfully applied to the sampling and analysis of environmental samples. This paper presents an overview of the current methods for air sampling and analysis with SPME using both grab and time-weighted average (TWA) modes. Methods include total volatile organic compounds (TVOCs), formaldehyde, and several target volatile organic compounds (VOCs). Field sampling data obtained with these methods in indoor air were validated with conventional methods based on sorbent tubes. The advantages and challenges associated with SPME for air sampling are also discussed. SPME is accurate, fast, sensitive, versatile, and cost-efficient, and could serve as a powerful alternative to conventional methods used by the research, industrial, regulatory, and academic communities.  相似文献   

2.
ABSTRACT

Solid phase microextraction (SPME) presents many advantages over conventional analytical methods by combining sampling, preconcentration, and direct transfer of the analytes into a standard gas chromatograph (GC). Since its commercial introduction in the early 1990s, SPME has been successfully applied to the sampling and analysis of environmental samples. This paper presents an overview of the current methods for air sampling and analysis with SPME using both grab and time-weighted average (TWA) modes. Methods include total volatile organic compounds (TVOCs), formaldehyde, and several target volatile organic compounds (VOCs). Field sampling data obtained with these methods in indoor air were validated with conventional methods based on sorbent tubes. The advantages and challenges associated with SPME for air sampling are also discussed. SPME is accurate, fast, sensitive, versatile, and cost-efficient, and could serve as a powerful alternative to conventional methods used by the research, industrial, regulatory, and academic communities.  相似文献   

3.
The location of the northeastern Iberian Peninsula (NEIP) in the northwestern Mediterranean basin, the presence of the Pyrenees mountain range (with altitudes > 3000 m), and the influence of the Mediterranean Sea and the large valley canalization of Ebro river induce an extremely complicated structure for the dispersion of photochemical pollutants. Air pollution studies in very complex terrains such as the NEIP require high-resolution modeling for resolving the very complex dynamics of flows. To deal with the influence of larger-scale transport, however, high-resolution models have to be nested in larger models to generate appropriate initial and boundary conditions for the finer resolution domains. This article shows the results obtained through the utilization of the MM5-EMICAT2000-CMAQ multiscale-nested air quality model relating the sensitivity regimes for ozone (O3)-nitrogen oxides (NOx)-volatile organic compounds (VOCs) in an area of high geographical complexity, like the industrial area of Tarragona, located in the NEIP. The model was applied with fine temporal (one-hour) and spatial resolution (cells of 24 km, 2 km, and 1 km) to represent the chemistry and transport of tropospheric O3 and other photochemical species with respect to different hypothetical scenarios of emission controls and to quantify the influence of different emission sources in the area. Results indicate that O3 chemistry in the industrial domain of Tarragona is strongly sensitive to VOCs; the higher percentages of reduction for ground-level O3 are achieved when reducing by 25% the emissions of industrial VOCs. On the contrary, reductions in the industrial emissions of NOx contribute to a strong increase in hourly peak levels of O3. At the same time, the contribution of on-road traffic and biogenic emissions to ground-level O3 concentrations in the area is negligible with respect to the pervasive weight of industrial sources. This analysis provides an assessment of the effectiveness of different policies for the control of emission of precursors by comparing the modeled results for different scenarios.  相似文献   

4.
Abstract

The location of the northeastern Iberian Peninsula (NEIP) in the northwestern Mediterranean basin, the presence of the Pyrenees mountain range (with altitudes >3000 m), and the influence of the Mediterranean Sea and the large valley canalization of Ebro river induce an extremely complicated structure for the dispersion of photochemical pollutants. Air pollution studies in very complex terrains such as the NEIP require high-resolution modeling for resolving the very complex dynamics of flows. To deal with the influence of larger-scale transport, however, high-resolution models have to be nested in larger models to generate appropriate initial and boundary conditions for the finer resolution domains. This article shows the results obtained through the utilization of the MM5-EMICAT2000-CMAQ multiscale-nested air quality model relating the sensitivity regimes for ozone (O3)-nitrogen oxides (NOx)-volatile organic compounds (VOCs) in an area of high geographical complexity, like the industrial area of Tarragona, located in the NEIP. The model was applied with fine temporal (one-hour) and spatial resolution (cells of 24 km, 2 km, and 1 km) to represent the chemistry and transport of tropospheric O3 and other photochemical species with respect to different hypothetical scenarios of emission controls and to quantify the influence of different emission sources in the area. Results indicate that O3 chemistry in the industrial domain of Tarragona is strongly sensitive to VOCs; the higher percentages of reduction for ground-level O3 are achieved when reducing by 25% the emissions of industrial VOCs. On the contrary, reductions in the industrial emissions of NOx contribute to a strong increase in hourly peak levels of O3. At the same time, the contribution of on-road traffic and biogenic emissions to ground-level O3 concentrations in the area is negligible with respect to the pervasive weight of industrial sources. This analysis provides an assessment of the effectiveness of different policies for the control of emission of precursors by comparing the modeled results for different scenarios.  相似文献   

5.
Kierdorf U  Kierdorf H 《Chemosphere》2003,52(10):1677-1681
Temporal changes of environmental fluoride concentration in the industrialized area of Siegen, western Germany were assessed by studying the fluoride content of antlers (n=116) collected between 1948 and 2000 from the resident roe deer (Capreolus capreolus) population. During the analyzed period, major fluoride emission sources in the study area have been iron- and steelworks. Fluoride concentrations in the antlers ranged between 118 and 5428 mg/kg of bone ash. There was an overall increase in antler fluoride content from the late 1940s/early 1950s to the late 1950s/mid-1960s. Thereafter, antler fluoride levels overall steadily declined. For statistical analysis, the data were grouped into five periods (1948–1959, 1960–1969, 1970–1979, 1980–1989, and 1990–2000). Geometric mean fluoride concentrations of the samples ranged from 323 (period 1990–2000) to 2096 mg/kg of bone ash (period 1960–1969). Sample means for the periods 1980–1989 and 1990–2000, respectively, were always significantly lower than those of older samples. The decrease in antler fluoride concentrations during recent decades suggests a drop of ambient fluoride levels, that is hypothetically attributed to a reduction in the number of emission sources in the area and a decline of fluoride discharges from both local and more distant sources due to improved emission control measures. Comparison with antler fluoride data for other roe deer populations from western Germany further suggests that the roe deer from the Siegen area were recently exposed to an only moderate additional fluoride load from industrial sources. Studying antler fluoride concentrations is a convenient and cost-effective method of monitoring temporal changes in ambient fluoride levels.  相似文献   

6.
The levels and distribution of 55 volatile organic compounds (VOCs) were determined by purge and trap GC-MS on water samples from 30 sites within the urban rivers and estuaries of Osaka, a populated industrialized city of Japan. Forty of 55 target VOCs listed in the US EPA Method 524.2 were detected. Dichloromethane (DCM) was found at higher levels at all of the sampling sites. The distribution of dominant VOCs followed four different patterns. First, the most common VOCs (DCM, toluene, trichloroethene and tetrachloroethene) showed concentration maxima in the river segments, and the sites of maximum concentration fluctuated due to irregular large spills and/or loadings. Second, one VOC (cis-1,2-dichloroethene) was evenly distributed in particular rivers due to fixed loadings. Both of these patterns were found in the upper and middle reaches. Third, some of VOCs (1,2,3-trichloropropane and benzene) were specific to a single industrial site and truceable to those sources. Finally, some VOCs showed no concentration maxima along the rivers and entered from multiple sources (chloroform and bromodichloromethane). Diurnal variations of VOCs at the border of the city area, receiving domestic and industrial discharges, provided information to interpret their observed downstream distribution and possible sources.  相似文献   

7.
Emissions of volatile organic compounds (VOCs) are most frequent environmental nuisance complaints in urban areas, especially where industrial districts are nearby. Unfortunately, identifying the responsible emission sources of VOCs is essentially a difficult task. In this study, we proposed a dynamic approach to gradually confine the location of potential VOC emission sources in an industrial complex, by combining multi-path open-path Fourier transform infrared spectrometry (OP-FTIR) measurement and the statistical method of principal component analysis (PCA). Close-cell FTIR was further used to verify the VOC emission source by measuring emitted VOCs from selected exhaust stacks at factories in the confined areas. Multiple open-path monitoring lines were deployed during a 3-month monitoring campaign in a complex industrial district. The emission patterns were identified and locations of emissions were confined by the wind data collected simultaneously. N,N-Dimethyl formamide (DMF), 2-butanone, toluene, and ethyl acetate with mean concentrations of 80.0?±?1.8, 34.5?±?0.8, 103.7?±?2.8, and 26.6?±?0.7 ppbv, respectively, were identified as the major VOC mixture at all times of the day around the receptor site. As the toxic air pollutant, the concentrations of DMF in air samples were found exceeding the ambient standard despite the path-average effect of OP-FTIR upon concentration levels. The PCA data identified three major emission sources, including PU coating, chemical packaging, and lithographic printing industries. Applying instrumental measurement and statistical modeling, this study has established a systematic approach for locating emission sources. Statistical modeling (PCA) plays an important role in reducing dimensionality of a large measured dataset and identifying underlying emission sources. Instrumental measurement, however, helps verify the outcomes of the statistical modeling. The field study has demonstrated the feasibility of using multi-path OP-FTIR measurement. The wind data incorporating with the statistical modeling (PCA) may successfully identify the major emission source in a complex industrial district.  相似文献   

8.
Volatile organic compounds at swine facilities: A critical review   总被引:3,自引:0,他引:3  
Ni JQ  Robarge WP  Xiao C  Heber AJ 《Chemosphere》2012,89(7):769-788
Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions.Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples.The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts.Identification and quantification of VOCs were restricted by using instruments based on gas Chromatography (GC) and liquid chromatography (LC) with different detectors most of which require time-consuming procedures to obtain results. Various methodologies and technologies in sampling, sample preparation, and sample analysis have been used. Only four publications reported using GC based analyzers and PTR-MS (proton-transfer-reaction mass spectrometry) that allowed continuous VOC measurement. Because of this, the majority of experimental studies were only performed on limited numbers of air, manure, or dust samples. Many aerial VOCs had concentrations that were too low to be identified by the GC peaks.Although VOCs emitted from swine facilities have environmental concerns, only a few studies investigated VOC emission rates, which ranged from 3.0 to 176.5 mg d−1 kg−1 pig at swine finishing barns and from 2.3 to 45.2 g d−1 m−2 at manure storages. Similar to the other pollutants, spatial and temporal variations of aerial VOC concentrations and emissions existed and were significantly affected by manure management systems, barn structural designs, and ventilation rates.Scientific research in this area has been mainly driven by odor nuisance, instead of environment or health concerns. Compared with other aerial pollutants in animal agriculture, the current scientific knowledge about VOCs at swine facilities is still very limited and far from sufficient to develop reliable emission factors.  相似文献   

9.
Chemical composition of major VOC emission sources in the Seoul atmosphere   总被引:6,自引:0,他引:6  
Na K  Kim YP  Moon I  Moon KC 《Chemosphere》2004,55(4):585-594
This paper describes a chemical analysis of volatile organic compounds (VOCs) for five emission sources in Seoul. The source categories included motor vehicle exhaust, gasoline evaporation, paint solvents, natural gas and liquefied petroleum gas (LPG). These sources were selected because they have been known to emit significant quantities of VOCs in the Seoul area (more than 5% of the total emission inventory). Chemical compositions of the five emission sources are presented for a group of 45 C2-C9 VOCs. Motor vehicle exhaust profiles were developed by conducting an urban tunnel study. These emissions profiles were distinguished from the other emission profiles by a high weight percentage of butanes over seasons and propane in the wintertime. It was found that this is due to the wide use of butane-fueled vehicles. To obtain gasoline vapor profiles, gasoline samples from five major brands for each season were selected. The brands were blended on the basis of the marketshare of these brands in Seoul area. Raoult's law was used to calculate gasoline evaporative compositions based on the liquid gasoline compositions. The measured and estimated gasoline vapor compositions were found to be in good agreement. Vehicle and gasoline evaporation profiles were made over seasons because of the seasonal change in their compositions. Paint solvent emissions profiles were produced based on a product-use survey and sales figures. These profiles are a composite of four major oil-based paints and thinning solvent. The source profile of natural gas was made on a methane-free basis. It was found that Ethane and propane were the most abundant compounds accounting for 95% of the natural gas composition. LPG was largely composed of propane and ethane and the remaining components were minor contributors.  相似文献   

10.
Solid phase microextraction (SPME) is a fast, cheap and solvent free methodology widely used for environmental analysis. A SPME methodology has been optimized for the analysis of VOCs in a range of matrices covering different soils of varying textures, organic matrices from manures and composts from different origins, and biochars. The performance of the technique was compared for the different matrices spiked with a multicomponent VOC mixture, selected to cover different VOC groups of environmental relevance (ketone, terpene, alcohol, aliphatic hydrocarbons and alkylbenzenes). VOC recovery was dependent on the nature itself of the VOC and the matrix characteristics. The SPME analysis of non-polar compounds, such as alkylbenzenes, terpenes and aliphatic hydrocarbons, was markedly affected by the type of matrix as a consequence of the competition for the adsorption sites in the SPME fiber. These non-polar compounds were strongly retained in the biochar surfaces limiting the use of SPME for this type of matrices. However, this adsorption capacity was not evident when biochar had undergone a weathering/aging process through composting. Polar compounds (alcohol and ketone) showed a similar behavior in all matrices, as a consequence of the hydrophilic characteristics, affected by water content in the matrix. SPME showed a good performance for soils and organic matrices especially for non-polar compounds, achieving a limit of detection (LD) and limit of quantification (LQ) of 0.02 and 0.03 ng g−1 for non-polar compounds and poor extraction for more hydrophilic and polar compounds (LD and LQ higher 310 and 490 ng g−1). The characteristics of the matrix, especially pH and organic matter, had a marked impact on SPME, due to the competition of the analytes for active sites in the fiber, but VOC biodegradation should not be discarded in matrices with active microbial biomass.  相似文献   

11.
Determination of volatile organic compounds (VOCs) formed one part of the EU-EXPOLIS project in which the exposure of European urban populations to particles and gaseous pollutants was studied. The EXPOLIS study concentrated on 30 target VOCs selected on the basis of environmental and health significance and usability of the compounds as markers of pollution sources. In the project, 201 subjects in Helsinki, 50 in Athens, 50 in Basel, 50 in Milan and, 50 in Oxford and 50 in Prague were selected for the final exposure sample. The microenvironmental and personal exposure concentrations of VOCs were the lowest in Helsinki and Basel, while the highest concentrations were measured in Athens and Milan; Oxford and Prague were in between. In all cities, home indoor air was the most significant exposure agent. Workplace indoor air concentrations measured in this study were generally lower than the home indoor concentrations and home outdoor air played a minor role as an exposure agent. When estimating the measured personal exposure concentrations using the measured concentrations and time fractions spent at home indoors, at home outdoors, and at the workplace, it could be concluded that these three microenvironments do not fully explain the personal exposure. Other important sources for personal exposure must be encountered, the most important being traffic/transportation and other indoor environments not measured in this study.  相似文献   

12.
Abstract

Hazardous waste sites and industrial facilities contain area sources of fugitive emissions. Emission rate measurements or estimates are necessary for air pathway assessments for these sources. Emission rate data can be useful for the design of emission control and remediation strategies as well as for predictive modeling for population exposure assessments. This paper describes the use of a direct emission measurement approach – the enclosure approach using an emission isolation flux chamber – to measure emission rates of various volatile organic compounds (VOCs) from contaminated soil and water. A variety of flux chamber equipment designs and operating procedures have been employed by various researchers. This paper contains a review of the design and operational variables that affect the accuracy and precision of the method. Guidance is given as to the optimum flux chamber design and operating conditions for various types of emission sources. Also presented is a generic quality control program that gives the minimum number of duplicate, blank, background, and repeat samples that should be performed.  相似文献   

13.
The science parks have helped shape Taiwan as a high-tech island with a good reputation worldwide. But some complaints on air pollution from the science parks have recently risen. To better understand the environmental effects of volatile organic compounds (VOCs) emitted from various high-tech factories in a science park, this study uses a source–receptor approach to characterize the environmental effects of VOCs from control device exhaust in Taichung Science Park. The chemical mass balance model (CMB8.2) of field measurements of 30 stacks and ambient air at nine sites was used to identify the source and relative contribution of ambient VOCs. The exhaust gas of various pollution control devices was also sampled by drawing a stream of the gases from the exhaust duct at its sampling port. The VOC source profile of each control device exhaust was determined using a database of noncharacteristic compounds. Monthly ambient concentrations of 167 VOCs were divided into monsoon datasets to investigate the effect of monsoon conditions on the emission of VOCs in the science park. This study also suggests a method for determining the optimum source profile in source–receptor modeling, and identifies and analyzes the sources of ambient VOCs at nine sites during southwest and northeast monsoons. Results show a direct relationship between the relative contribution of each source and its control device efficiency. The proposed source–receptor approach can characterize the environmental effect of air pollutants from various factories and successfully assess the efficiency of various control devices.  相似文献   

14.
The stack gases of a municipal solid waste incinerator (MSWI), and ambient air were sampled in four locations around the plant for the analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs). The sampling area was close to an industrial area near Trieste, in north-east Italy. The purpose of the study was to estimate the impact of the MSWI emissions and to distinguish the contribution of these emissions from other potential emission sources in the industrial area.PCDD/F atmospheric concentrations were similar to those generally detected in urban–rural areas with one location about 2–3 times more contaminated than the others. Since the most contaminated location was inside the industrial area but upwind of the MSWI, principal component analysis (PCA) was used to establish whether other sources were the cause. This analysis clearly showed that a local steel plant’s emission was the main source of PCDDs/Fs in ambient air. This study highlights the usefulness of multivariate data analysis such as PCA to identify, among different potential emission sources, the one really responsible for the contamination.  相似文献   

15.
为深入了解天津市大气挥发性有机物(VOCs)来源及对O3的影响,基于2020年天津市VOCs在线监测数据,统计分析了VOCs污染特征,用主成分分析法对天津市VOCs的来源进行解析,用最大增量反应活性法分析VOCs的O3生成潜势(OFP).结果表明:2020年天津市VOCs的年均质量浓度总和为56.56μg/m3,其中,...  相似文献   

16.
In many urban areas, on-road vehicles are the biggest contributing source category of volatile organic compounds (VOCs) and nitrogen oxides (NOx). Based on a recently completed emission inventory study for three counties in central Florida, the major source by far of anthropogenic VOCs and NOx was on-road mobile sources, even though other sources (such as construction equipment, lawn and garden equipment, and various point sources) were also significant. Although there is specific guidance for conducting an ozone-season inventory for mobile sources, there is a lack of detailed guidance as to how to employ the U.S. Environmental Protection Agency's (EPA) latest mobile source emission factor program, MOBILE6, for an annual inventory. Several of the MOBILE6 inputs that significantly influence emission factors (e.g., temperature) can vary widely throughout the year, and the annual average value may not be appropriate. Rather, it may be better to utilize monthly values of these parameters. This paper investigated the sensitivity of the annual emission inventory results to using annual or monthly values of temperature, Reid Vapor Pressure of gasoline, and humidity. The results show that, for a three-county area in central Florida representing metropolitan Orlando, the annual emission inventory based on the sum of individual monthly averages is not significantly different from that calculated using one set of annual average inputs to MOBILE6.  相似文献   

17.
空气中挥发性有机物监测技术的研究进展   总被引:13,自引:0,他引:13  
讨论了空气中挥发性有机化合物(VOCs)的监测分析方法研究进展。重点介绍了空气中VOCs的采集、分析和测定;简要叙述了样品前处理的新方法--固相微萃取法(SPME)与其它前处理方法的研究概况。  相似文献   

18.
This work surveyed five process regions inside a petrochemical plant in Taiwan to characterize the profiles of airborne volatile organic compounds (VOCs) and locate emission sources. Samples, taken with canisters, were analyzed with gas chromatography-mass spectrometry according to the TO-14 method. Each region was deployed with 24 sampling sites, sampled twice, and 240 samples in total were measured during the survey period. All of the data were consolidated into a database on Excel to facilitate retrieval, statistical analysis, and presentation in the form of a table or graph, and, subsequently, the profile of VOCs was elucidated. Emission sources were located by mapping the concentration distribution of either an individual or a type of species in terms of contour maps on Surfer. Through the cross-analysis of data, the abundant VOCs included alkenes, dienes, alkanes, and aromatics. A total of 19 emission sources were located from these five regions. The sources for alkanes stood inside first, third aromatic, and fourth naphtha cracking regions, whereas the ones for alkenes were inside two naphtha cracking regions. The sources for dienes were found inside the third naphtha cracking region alone; in contrast, the sources for aromatics were universally traced except inside the third naphtha cracking region. The measured intensity for sources mostly ranged from 1000 to 7000 ppb.  相似文献   

19.
In 2005 and 2006, the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and metals (As, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sn, Tl and V) were measured in air samples collected in an industrial area of Sant Adrià del Besòs (Barcelona, Catalonia, Spain) where a municipal solid waste incinerator (MSWI) is placed, and in a background/control area. In general terms, concentrations of all environmental pollutants were higher at the industrial site. No significant seasonal/temporal variations were observed in any of the areas. No Pearson correlation was found between the PCDD/F concentrations and the environmental conditions of the two sampling periods considered. Principal component analyses (PCA) were performed to get information on the relationship among samples, pollutants, and emission sources. The results indicate that the MSWI of S. Adrià de Besòs is not a significant emission source of the above compounds for the area under its direct influence. Moreover, a notable difference in the PCDD/F congener profiles was found between ambient air and stack gas emissions, indicating that the current levels of PCDD/Fs are more related to other potential emissions sources rather than to those from the MSWI.  相似文献   

20.
Intensive field investigations were conducted at the summit of Mount Tai in June 2006 to understand the effects of the local and regional sources on atmospheric volatile organic compounds (VOCs) distributions. A total of 60 samples were collected and determined by quantitative analytical methods. The concentrations of the total VOCs (TVOCs) observed in the air of Mount Tai were 6.95 ± 5.71 ppb. Aromatic hydrocarbons provided the largest contribution to TVOCs, followed by alkanes and halocarbons. High levels of halocarbons accounted for 20% of TVOCs due to emission from a PVC plant located at the foot of Mount Tai. Alkenes and cycloalkanes contributed little to the total VOCs. The day-and-night differences and day-to-day variations in the concentrations of four selected species were investigated and the effects of several factors such as meteorological parameters, sources and transport characteristics on them were discussed in details. A back trajectory analysis showed that relatively higher levels of VOCs were related to long-range transport of pollutants from polluted areas. The vertical motions of air masses also had a large impact on the variations of the levels of VOCs. The result of the variability–lifetime relationships of VOCs, which is used to estimate the remoteness of the sampling location, showed that Mount Tai represents intermediate conditions between remote sites and sites in the vicinity of sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号