首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Foliar markings on vegetation have proven a highly sensitive criterion for the presence of many air pollutants; proper evaluation of such effects can serve as a valuable and inexpensive tool for delineating an air pollution condition. Injury symptoms from fluoridt, sulfur dioxide, photochemical oxidants and other pollutants have been described and can be recognized by experienced observers. Field studies provide a valuable technique for appraising an air pollution problem when diagnosis is not confused by other factors. Careful inspection can avert difficulties arising in diagnosis where similar symptoms are produced by agents other than air pollutants. Several factors must be considered in appraising injury. These include a knowledge of the relative sensitivity of plant species to various pollutants, the syndrome of injury on a number of plants and species, and distribution and geographic relation of affected plants to the suspected source. Background information on cultural, environmental, disease and insect conditions which might be responsible for, or modify, foliar markings or chronic effects in question must also be understood. For some pollutants a chemical analysis of foliage and air may prove helpful. When these factors are studied, the presence, distribution and magnitude of an air pollution situation can be evaluated, thus providing a sensitive criterion of air quality.  相似文献   

2.
The types and rates of pollutant emissions from a coal-fired power plant depend upon plant design, coal characteristics, and environmental control policy. In the past, air pollution regulations were often promulgated without rigorous analysis of the resulting energy penalties and secondary environmental impacts that occur in other environmental media (air, land, or water), which are counterproductive to overall environmental quality. This paper describes a Comparative Assessment Model that has been developed to consider systematically such tradeoffs for conventional and advanced coal-to-electric technologies. The model is applied to quantify the secondary (“cross-media”) environmental and resource impacts resulting from alternative air pollution control policies that reduce sulfur dioxide emissions from a 1000 MW power plant. Multimedia pollutant burdens are presented, together with the increased requirements for coal, limestone, and water that are incurred in generating a fixed net quantity of electricity. The development of sound public policy requires that environmental regulations be sensitive to adverse effects in all environmental media, and that tradeoffs involved in the regulation of specific pollutants to one medium be rigorously and systematically characterized.  相似文献   

3.
The controlled atmosphere aspects of the environmental chambers at the University of Utah are described. Control of wind velocity, CO2, concentration, temperature, relative humidity, and pollutant concentration are discussed. Requirements of our research program dictating the chamber design include: (1) ability to expose plants to air pollutants under the same environmental conditions at different times; (2) ability to simulate field environmental conditions within acceptable limits; (3) ability to study the effects of temperature, light, relative humidity, and wind velocity on response of plants to air pollutants; (4) ability to measure growth suppression, respiration, and transpiration; and (5) ability to measure the pollutant uptake rate of the plants.  相似文献   

4.
A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.  相似文献   

5.
Concentration profiles for hydrogen fluoride(HF), sulfur dioxide(SO2), ozone (O3), nitrogen dioxide(NO2), and nitric oxide(NO) generated in a standardized alfalfa canopy are presented. Wind, light, temperature, and carbon dioxide(CO2) profiles, canopy pollutant uptake rates, and canopy structural data are also given. Canopy pollutant concentration profile characteristics were studied to evaluate the relative potentials for major air pollutants to penetrate into canopies. The study was conducted in an environmental growth chamber equipped to control automatically environmental conditions and monitor continuously gas exchange rates. HF, SO2, and NO2 profiles suggested that these gases were removed efficiently by the upper portion of the canopy as well as by the immediate subsurface vegetation. The steady state HF profile showed the greatest displacement within the canopy. The NO profile was displaced the least. The uptake rate of NO by plants was apparently too slow in comparison with gas transport and mixing within the canopy to affect the internal profile substantially. O3 appeared to be readily deposited on the surface tissues, but the deeper tissues in the canopy had less effect on the concentration profile. Data are also presented to show the relationship between NO2 concentration within the canopy and changes in the air concentration above the vegetation. The results indicated that gas transport between the atmosphere and canopy interior was rapid. The data presented should be of current interest to agriculturists, researchers, administrators, and environmental planners concerned with effects of air pollutants on plants and on the fate of pollutants in the microenvironment.  相似文献   

6.
The small-scale spatial variability of air pollution observed in urban areas has created concern about the representativeness of measurements used in exposure studies. It is suspected that limit values for traffic-related pollutants may be exceeded near busy streets, although respected at urban background sites. In order to assess spatial concentration gradients and identify weather conditions that might induce air pollution episodes in urban areas, different sampling and modelling techniques were studied.Two intensive monitoring campaigns were carried out in typical street canyons in Paris during winter and summer. Steep cross-road and vertical concentration gradients were observed within the canyons, in addition to large differences between roadside and background levels. Low winds and winds parallel to the street axis were identified as the worst dispersion conditions. The correlation between the measured compounds gave an insight into their sources and fate. An empirical relationship between CO and benzene was established. Two relatively simple mathematical models and an algorithm describing vertical pollutant dispersion were used. The combination of monitoring and modelling techniques proposed in this study can be seen as a reliable and cost-effective method for assessing air quality in urban micro-environments. These findings may have important implications in designing monitoring studies to support investigation on the health effects of traffic-related air pollution.  相似文献   

7.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.  相似文献   

8.
Abstract

This paper summarizes information on the spatial and temporal variability of selected air toxics pollutants collected on a national basis primarily for a period encompassing 1990–2003. Spatial information on pollutant concentrations is characterized in terms of within-city and between-city variability. Temporal information is summarized as diurnal and seasonal variability and in multiyear trends. The information on variability is presented in the framework of a larger need for systematic documentation of information on air toxics pollutants to assess progress in air pollution control programs.  相似文献   

9.
The effects of NO(2) pollution on the performance of aphids feeding on different bean varieties were investigated by fumigation experiments. The susceptibility of the different genotypes dramatically changed as the concentration of atmospheric pollutant was increased. The direction of change was not constant between varieties. Our data suggest that resistance or susceptibility of a plant variety to insect herbivory can be significantly altered when subjected to pollutant stress, thus indicating that it may be difficult to predict the susceptibility of host plants in a polluted atmosphere.  相似文献   

10.
Defense and avoidance of ozone under global change   总被引:8,自引:0,他引:8  
The level II approach of the critical loads concept adopted by the UNECE aims at a flux based evaluation and takes into account environmental factors governing stomatal conductance. These factors will probably be affected by global change. The flux concept predicts that a decrease in stomatal conductance would protect trees from air pollution effects by decreasing uptake. However, experimental evidence is inconclusive. Numerous results suggest that pollutants and factors subject to global change (drought, CO(2)) may interact and even exacerbate effects, probably because antioxidative defense systems are involved in both, defense against pollutant effects and protection from natural stress. An effective pollutant dose, which is weighted by physiological defense capacity, would better predict such effects. In this review paper we argue that the flux-based approach is imperfect, because global change effects may also modify the physiological susceptibility to ozone. Instead, a flux concept weighted by defense capacity should be tested.  相似文献   

11.
Air quality standards are established to prevent or minimize the risk of adverse effects from air pollution to human health, vegetation, and materials. In order to develop standards which provide an adequate measure of protection to vegetation, it is necessary to define, in as precise terms as possible, the relationship between ambient air quality and the potential for adverse effects on vegetation. Based on recent evidence published in the literature, as well as retrospective studies using data from the National Crop Loss Assessment Network (NCLAN), cumulative indices can be used to describe exposures of ozone for predicting agricultural crop effects. However, the mathematical form of the standard that may be proposed to protect crops does not necessarily have to be of the same form as that used in the statistical or process oriented mathematical models that relate ambient ozone exposures with vegetation effects. This paper discusses the limitations associated with applying a simple statistic that may take the place of a more biologically meaningful exposure parameter. While the NCLAN data have been helpful in identifying indices that may be appropriate for establishing exposure-response relationships, the limitations associated with the NCLAN protocol need to be considered when attempting to apply these relationships in the establishment of a secondary national ambient air quality standard. The Weibull model derived from NCLAN experiments must demonstrate its generality and universal applicability. Furthermore, its predictive power must be tested using independent sets of field data.  相似文献   

12.
The potential adverse effects of environmental change on agriculture have motivated considerable public research on this topic. Acid deposition, gaseous air pollutants, stratosphere ozone depletion and "green house" phenomena, individually and in combination, have been or are being evaluated in terms of effects on agricultural productivity. Assessments of the economic consequences of such effects have also been performed as input into the regulatory process. As with any applied bioeconomic analysis, the credibility of these economic assessments is dependent on the quality of the natural science and other data on the pollutant In question.

The ability of economists to assess the agricultural effects of one important pollutant, tropospheric ozone, has been Improved by the recently completed National Crop Loss Assessment Network (NCLAN). The structure, protocols and initial plant science findings of this U.S. Environmental Protection Agency program have been presented in this journal (see, for example, Heck et al).1-2 In a related article,3 we reported the economic consequences of those preliminary ozone crop yield effects. Summary plant science findings have now been published.4

We provide here a more complete analysis of estimated benefits from reductions in troposphere ozone based on the final results of the NCLAN plant science research. In doing so, we concentrate on improvements in the modeling and underlying data which are reflected In this current assessment. While uncertainties still remain, these improvements should result in more defensible estimates of the magnitude of ozone’s effects on U.S. agriculture.  相似文献   

13.
In order to assess fully the impact of persistent organic pollutants (POPs) on human health, pollutant exchange at the interface between terrestrial plants, in particular food crops, and other environmental compartments must be thoroughly understood. In this regard, transfers of multicomponent and chiral pollutants are particularly informative. In the present study, zucchini (Cucurbita pepo L.) was planted in containerized, uncontaminated soil under both greenhouse and field conditions and exposed to air-borne chlordane contamination at 14.0 and 0.20 ng/m(3) (average, greenhouses), and 2.2 ng/m(3) (average, field). Chiral gas chromatography interfaced to an ion trap mass spectrometer was used to determine the chiral (trans-chlordane, TC, and cis-chlordane, CC) and achiral (trans-nonachlor, TN) chlordane components in vegetation, air, and soil compartments. The chlordane components of interest were detected in all vegetation tissues examined--root, stem, leaves, and fruits. When compared with the data from a soil-to-plant uptake study, the compositional profile of the chlordane components, i.e. the component fractions of TC, CC, and TN, in plant tissues, showed significantly different patterns between the air-to-plant and soil-to-plant pathways. Changes in the enantiomer fractions of TC and CC in plant tissues relative to the source, i.e. air or soil, although observed, were not markedly different between the two routes. This report provides the first comprehensive comparison between two distinct plant uptake routes for POPs and their subsequent translocation within plant tissues.  相似文献   

14.
Present evidence suggests that ozone is the most damaging of all air pollutants affecting vegetation. It is the principal oxidant in the photochemical smog complex. Concentrations of ozone have exceeded 0.5 part per million (ppm) in the Los Angeles area. One-tenth of this level for 8 hours is known to injure very sensitive tobacco varieties. Many plant species are visibly affected after a few hours exposure at concentrations much lower than 0.5 ppm. There is also some evidence that ozone reduces plant growth. Many factors must be taken into account when considering standards to protect vegetation from ozone damage. These include ozone concentration and methods of measurement, time of exposure, possible additive effects of other pollutants, sensitivity of plant species, their economic value, and the extent of injury which can be tolerated. The response of a species to the pollutant is conditioned by genetic factors and environmental conditions. Lack of specific routine methods for measuring ozone in ambient air is a handicap. California and Colorado established standards for oxidants at 0.15 and 0.10 ppm, respectively, for 1 hour. How these standards relate to the ozone dosage causing acute and chronic injury to various plant species is discussed.  相似文献   

15.
Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone # 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air.  相似文献   

16.
This review has attempted to evaluate the present state of our knowledge of the effects on health in man of environmental exposure to oxides of sulfur, sulfates, and particulate matter. There has been a great deal of activity in this field over the last 15 years, and therefore any collation of this material will represent the selected biases of the reviewer. The conclusions reached can be summarized as follows: (1) These pollutants, as they have been measured in epidemiological investigations, can only be considered as indirect indices of general air pollution and in many cases cannot be separated from each other. Therefore, we cannot incriminate a specific source of any one pollutant as the producer of the most harmful substance to reach the ambient air. Conversely, we cannot excuse any specific source of one pollutant because that specific pollutant has not been found to cause disease at a given concentration. The measurements in ambient air are the net results from all sources of pollution in combination with factors influenced by weather and meteorological considerations. (2) Direct effects from acute, high ambient air pollution disasters have been adequately demonstrated. Significant excess mortality has occurred in association with particular air pollution episodes. All of these episodes have occurred during cold weather, and the effects of temperature must also be considered along with elevated levels of smoke and sulfur oxides. (3) Specific working groups exposed to unusually high levels of these pollutants do not demonstrate dramatic effects. This is presumably related to the fact that susceptible people are self-selected out of these environments. (4) Associations between the prevalence of chronic respiratory disease in the general population and specific levels of these air pollutants have been demonstrated. The major thrusts of epidemiological investigations have been to study the effects of chronic exposure to ambient levels of smoke and sulfur dioxide. The studies to date have collected and analyzed point-prevalence data and information obtained from retrospective investigations. Although epidemiological investigations cannot prove a cause-and-effect relationship, the consistency of the results is such that one must conclude that a causal association is likely. In this reviewer’s opinion we have reached the stage at which we no longer need to demonstrate the effect of past exposure to these pollutants. What is needed now is to demonstrate the effects of current and continued exposure. This will require a better understanding of the natural history and pathophysiology of the diseases thought to be associated with chronic exposure to smoke and sulfur dioxide. Because of the nature of chronic respiratory disease, groups of subjects for whom exposure is known, must be followed over extended periods of time. The logical extension of these observations will be the follow-up of large populations for whom exposure has been reduced. Only by studies of this kind may we be able to prove the cause-and-effect relationship which most likely exists.  相似文献   

17.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter ≤2.5 μm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore's contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.

Implications Singapore is widely recognized for its environmental achievements and often cited as a model of a high-density, livable, and sustainable city. This article reviews available information with the aim to provide a reference for future scientific research of strategic relevance for Singapore's air quality and greenhouse gas mitigation management under a multipollutant framework. However, the limited publicly accessible data and little scientific information prevent a comprehensive assessment of the local air quality and greenhouse gas emissions. Singapore's dynamic economy and strong profile in advanced science and technological innovation have the potential to enhance the research agenda in this area, which is not yet well developed in tropical cities.  相似文献   

18.
Most investigations of the adverse health effects of multiple air pollutants analyse the time series involved by simultaneously entering the multiple pollutants into a Poisson log-linear model. Concerns have been raised about this type of analysis, and it has been stated that new methodology or models should be developed for investigating the adverse health effects of multiple air pollutants. In this paper, we introduce the use of the lasso for this purpose and compare its statistical properties to those of ridge regression and the Poisson log-linear model. Ridge regression has been used in time series analyses on the adverse health effects of multiple air pollutants but its properties for this purpose have not been investigated. A series of simulation studies was used to compare the performance of the lasso, ridge regression, and the Poisson log-linear model. In these simulations, realistic mortality time series were generated with known air pollution mortality effects permitting the performance of the three models to be compared. Both the lasso and ridge regression produced more accurate estimates of the adverse health effects of the multiple air pollutants than those produced using the Poisson log-linear model. This increase in accuracy came at the expense of increased bias. Ridge regression produced more accurate estimates than the lasso, but the lasso produced more interpretable models. The lasso and ridge regression offer a flexible way of obtaining more accurate estimation of pollutant effects than that provided by the standard Poisson log-linear model.  相似文献   

19.
This paper presents an example of how air pollution models can be used together with energy system models to study the impacts of climate change mitigation strategies on air pollution. As many mitigation measures of greenhouse gases (GHGs) affect the use of fossil fuels in energy production, they can have important side-effects on other air pollution problems. This paper studies on a national scale the impacts of the planned GHG reduction measures on multiple air pollution problems in Finland, concentrating on acidification of forest soils and lakes, tropospheric ozone levels harmful to humans and vegetation and on emissions of fine particles. The air pollutant emission scenarios with the alternative energy choices are calculated for about 200 large point sources, assuming the present emission limit legislation. Disperse emissions are treated at municipality level. The analysis extends to the year 2020. The implementation of the Kyoto protocol in Finland would induce notable reductions of multiple air pollutant emissions and related environmental impacts. A 6–11% reduction in ecosystems threatened by acidification in Southern and Central Finland would be achieved with the Finnish Climate Strategy alone. Substantial improvement in ozone levels would be reached in all scenarios compared to the current situation. The measures of the Climate Strategy could reduce the harmful ozone levels by a further 3%. The measures of the Climate Strategy would not significantly affect the primary particulate emissions in the future because the emissions from large power plants are already effectively controlled. Contrary to the fuel choices of the large units, expanded use of small-scale wood combustion can result in considerable increases of both fine particulate and VOC emissions.  相似文献   

20.
The occurrence of high ozone levels in the atmosphere of urban areas has become a serious pollution problem in a number of large cities in the world. Although mathematical models have been proposed for predicting ozone concentrations as a function of a number of gas components, sometimes there are uncertainties due to lack of the combined effects of meteorological factors and the complex chemical reaction system involved. The application of neural network models, based on measured values of air pollutants and meteorological factors at different locations within the S?o Paulo Metropolitan Area, combine chemical and meteorological information. This has shown to be a promising tool for predicting ozone concentration. Simulations carried out with the model indicate the sensitivity of ozone in relation to different air pollution and weather conditions. Predictions using this model have shown good agreement with measured values of ozone concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号